Bulletin of Mathematical Biology

, Volume 75, Issue 7, pp 1104–1137

Dynamics Analysis of a Multi-strain Cholera Model with an Imperfect Vaccine

  • Mohammad A. Safi
  • Dessalegn Y. Melesse
  • Abba B. Gumel
Original Article

Abstract

A new two-strain model, for assessing the impact of basic control measures, treatment and dose-structured mass vaccination on cholera transmission dynamics in a population, is designed. The model has a globally-asymptotically stable disease-free equilibrium whenever its associated reproduction number is less than unity. The model has a unique, and locally-asymptotically stable, endemic equilibrium when the threshold quantity exceeds unity and another condition holds. Numerical simulations of the model show that, with the expected 50 % minimum efficacy of the first vaccine dose, vaccinating 55 % of the susceptible population with the first vaccine dose will be sufficient to effectively control the spread of cholera in the community. Such effective control can also be achieved if 50 % of the first vaccine dose recipients take the second dose. It is shown that a control strategy that emphasizes the use of antibiotic treatment is more effective than one that emphasizes the use of basic (non-pharmaceutical) anti-cholera control measures only. Numerical simulations show that, while the universal strategy (involving all three control measures) gives the best outcome in minimizing cholera burden in the community, the combined basic anti-cholera control measures and treatment strategy also has very effective community-wide impact.

Keywords

Cholera Equilibria Stability Vaccine Basic control measures 

References

  1. Alexanderian, A., Gobbert, M., Fister, K., Gaff, H., Lenhart, S., & Schaefer, E. (2011). An age-structured model for the spread of epidemic cholera: analysis and simulation. Nonlinear Anal., Real World Appl., 12, 3483–3498. MathSciNetMATHCrossRefGoogle Scholar
  2. Anderson, R. M., & May, R. M. (1982). Population biology of infectious diseases. Berlin: Springer. CrossRefGoogle Scholar
  3. Blower, S. M., & Dowlatabadi, H. (1994). Sensitivity and uncertainty analysis of complex models of disease transmission: an HIV model, as an example. Int. Stat. Rev., 62, 229–243. MATHCrossRefGoogle Scholar
  4. Capasso, V., & Paveri-Fontana, S. L. (1979). A mathematical model for the 1973 cholera epidemic in the European Mediterranean region. Rev. épidémiol. Santé Publique, 27, 121–132. Google Scholar
  5. Carr, J. (1981). Applications of centre manifold theory. New York: Springer. MATHCrossRefGoogle Scholar
  6. Castillo-Chavez, C., & Song, B. (2004). Dynamical models of tuberculosis and their applications. Math. Biosci. Eng., 1, 361–404. MathSciNetMATHCrossRefGoogle Scholar
  7. Clemens, J. D., Sack, D. A., Harris, J. R., van Loon, F., et al. (1990). Field trial of oral cholera vaccines in Bangladesh: results from three-year follow-up. Lancet, 335, 270–273. CrossRefGoogle Scholar
  8. Codeco, C. T. (2001). Endemic and epidemic dynamics of cholera: the role of the aquatic reservoir. BMC Infect. Dis. doi:10.1186/1471-2334-1-1. Google Scholar
  9. Colwell, R. R., & Huq, A. (1994). Environmental reservoir of Vibrio cholerae, the causative agent of cholera. Ann. N.Y. Acad. Sci., 740, 44–53. CrossRefGoogle Scholar
  10. Diekmann, O., Heesterbeek, J. A. P., & Metz, J. A. J. (1990). On the definition and computation of the basic reproduction ratio \(\mathcal{R}_{0}\) in models for infectious disease in heterogeneous population. J. Math. Biol., 28, 365–382. MathSciNetMATHCrossRefGoogle Scholar
  11. Gaffga, N. H., Tauxe, R. V., & Mintz, E. D. (2007). Cholera: a new home land in Africa? Am. J. Trop. Med. Hyg., 77, 705–713. Google Scholar
  12. Ghosh, A., & Ramamurthy, T. (2011). Antimicrobials and cholera: are we stranded? Indian J. Med. Res., 133, 225–231. Google Scholar
  13. Hale, J. K. (1969). Ordinary differential equations. New York: Wiley. MATHGoogle Scholar
  14. Hartley, D. M., Morris, J. G. Jr., & Smith, D. L. (2006). Hiperinfectivity: a critical element in the ability of V. cholerae to cause epidemics? PLoS Med., 3(1), 63–69. CrossRefGoogle Scholar
  15. Hethcote, H. W. (2000). The mathematics of infectious diseases. SIAM Rev., 42, 599–653. MathSciNetMATHCrossRefGoogle Scholar
  16. Hill, D. R., Ford, L., & Lalloo, D. G. (2006). Oral cholera vaccines: use in clinical practice. Lancet Infect. Dis., 7, 361–373. CrossRefGoogle Scholar
  17. Hove-Musekwa, S. D., Nyabadza, F., Chiyaka, C., Das, P., Tripathi, A., & Mukandavire, Z. (2011). Modelling and analysis of the effects of malnutrition in the spread of cholera. Math. Comput. Model., 53, 1583–1595. MathSciNetMATHCrossRefGoogle Scholar
  18. Islam, M., Miah, M., Hasan, M., Sack, R., & Albert, M. (1994). Detection of non-culturableVibrio cholerae O1 associated with a cyanobacterium from an aquatic environment in Bangladesh. Trans. R. Soc. Trop. Med. Hyg., 88, 298–299. CrossRefGoogle Scholar
  19. Kitaoka, M., Miyata, S. T., Unterweger, D., & Pukatzki, S. (2011). Antibiotic resistance mechanisms of Vibrio cholera. J. Med. Microbiol., 60, 397–407. CrossRefGoogle Scholar
  20. Longini, I. M. Jr., Nizam, A., Ali, M., Yunus, M., Shenvi, N., & Clemens, J. D. (2007). Controlling endemic cholera with oral vaccines. PLoS Med., 4(11), 1776–1783. CrossRefGoogle Scholar
  21. McLeod, R. G., Brewster, J. F., Gumel, A. B., & Slonowsky, D. A. (2006). Sensitivity and uncertainty analyses for a SARS model with time-varying inputs and outputs. Math. Biosci. Eng., 3(3), 527–544. MathSciNetMATHCrossRefGoogle Scholar
  22. Mahalanabis, A., Lopez, A. L., Sur, D., Deen, J., Manna, B., et al. (2008). A randomized, placebo-controlled trial of the bivalent killed, whole-cell, oral cholera vaccine in adults and children in a cholera endemic area in Kolkata, India. PLoS ONE, 3(6), 1–7. CrossRefGoogle Scholar
  23. Mandal, J., Sangeetha, V., Ganesan, V., Parveen, M., Preethi, V., Harish, B. N., Srinivasan, S., Parija, S. C., & Srinivasan, S. P. (2012). Third-generation cephalosporin-resistant Vibrio cholerae, India. Emerg. Infect. Dis. doi:10.3201/eid1808.111686. Google Scholar
  24. Pascual, M., Bouma, M. J., & Dobson, A. P. (2002). Cholera and climate: revisiting the quantitative evidence. Microbes Infect., 4(2), 237–245. CrossRefGoogle Scholar
  25. Sack, D. A. (2011). How many cholera deaths can be averted in Haiti? Lancet, 377, 1214–1216. CrossRefGoogle Scholar
  26. Safi, M. A., & Gumel, A. B. (2010). Global asymptotic dynamics of a model for quarantine and isolation. Discrete Contin. Dyn. Syst., Ser. B, 14, 209–231. MathSciNetMATHCrossRefGoogle Scholar
  27. Sanches, R. P., Ferreira, C. P., & Kraenkel, R. A. (2011). The role of immunity and seasonality in cholera epidemics. Bull. Math. Biol., 73, 2916–2931. MathSciNetMATHCrossRefGoogle Scholar
  28. Seidlein, L. V. (2007). Vaccines for cholera control: does herd immunity play a role? PLoS Med., 4(11), 1719–1721. Google Scholar
  29. Sepulveda, J., Gomez-Dantes, H., & Bronfman, M. (1992). Cholera in the Americas: an overview. Infection, 20, 243–248. CrossRefGoogle Scholar
  30. Sharomi, O., & Gumel, A. (2008). Dynamical analysis of a multi-strain model of HIV in the presence of anti-retroviral drugs. J. Biol. Dyn., 2, 323–345. MathSciNetMATHCrossRefGoogle Scholar
  31. Shuai, Z., & van den Driessche, P. (2011). Global dynamics of cholera models with differential infectivity. Math. Biosci., 234, 118–126. MathSciNetMATHCrossRefGoogle Scholar
  32. Smith, H. L., & Waltman, P. (1995). The theory of the chemostat. Cambridge: Cambridge University Press. MATHCrossRefGoogle Scholar
  33. Sur, D., et al. (2009). Efficacy and safety of a modified killed-whole-cell oral cholera vaccine in India: an interim analysis of a cluster-randomised, double-blind, placebo-controlled trial. Lancet, 349, 1694–1702. CrossRefGoogle Scholar
  34. Tian, J., & Wang, J. (2011). Global stability for cholera epidemic models. Math. Biosci., 232, 31–41. MathSciNetMATHCrossRefGoogle Scholar
  35. Thieme, H. R. (2003). Mathematics in population biology. Princeton: Princeton University Press. MATHGoogle Scholar
  36. van den Driessche, P., & Watmough, J. (2002). Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci., 180, 29–48. MathSciNetMATHCrossRefGoogle Scholar
  37. van Loon, F. P. L., Clemens, D., Chakraborty, J., et al. (1996). Field trial of inactivated cholera vaccines in Bangladesh: results from 5 years of follow-up. Vaccine, 14, 162–166. CrossRefGoogle Scholar
  38. World Health Organization (2001). Antimicrobial resistance in shigellosis, cholera and campylobacteriosis. http://www.who.int/drugresistance/Antimicrobial_resistance_in_shigellosis_cholera_and_cam.pdf. Accessed: 10 February 2013.
  39. World Health Organization (2010a). High hopes for oral cholera vaccine. Bull. World Health Organ., 88(3), 165–166. CrossRefGoogle Scholar
  40. World Health Organzation (2010b). Cholera vaccines: a brief summary of the March 2010 position paper. http://www.who.int/immunization/Cholera_PP_Accomp_letter__Mar_10_2010.pdf. Accessed: 10 February 2013.
  41. World Health Organzation (2012). Weekly epidemiological, record No. 31-32. http://www.who.int/wer/2012/wer8731_32.pdf. Accessed: 10 February 2013.
  42. World Health Organization (2013). Media center: cholera. http://www.who.int/mediacentre/factsheets/fs107/en/. Accessed: 10 February 2013.
  43. Zhou, X., & Cui, J. (2010). Modeling and stability analysis for a cholera model with vaccination. Math. Methods Appl. Sci., 34, 1711–1724. MathSciNetGoogle Scholar
  44. Zuckerman, J. N., Rombo, L., & Fisch, A. (2007). The true burden and risk of cholera: implications for prevention and control. Lancet Infect. Dis., 7(8), 521–530. CrossRefGoogle Scholar

Copyright information

© Society for Mathematical Biology 2013

Authors and Affiliations

  • Mohammad A. Safi
    • 1
  • Dessalegn Y. Melesse
    • 2
  • Abba B. Gumel
    • 3
  1. 1.Department of MathematicsThe Hashemite UniversityZarqaJordan
  2. 2.The Centre for Global Public Health, Department of Community Health SciencesUniversity of ManitobaWinnipegCanada
  3. 3.Department of MathematicsUniversity of ManitobaWinnipegCanada

Personalised recommendations