Advertisement

Bulletin of Mathematical Biology

, Volume 75, Issue 5, pp 796–818 | Cite as

Modelling the Use of Wolbachia to Control Dengue Fever Transmission

  • Harriet Hughes
  • N. F. Britton
Original Article

Abstract

Experiments and field trials have shown that the intracellular bacterium Wolbachia may be introduced into populations of the mosquito Aedes aegypti, the primary vector for dengue fever. In the absence of Wolbachia, a mosquito acquiring the dengue virus from an infected human enters an exposed (infected but not infectious) period before becoming infectious itself. A Wolbachia-infected mosquito that acquires dengue (i) may have a reduced lifespan, so that it is less likely to survive the exposed period and become infectious, and (ii) may have a reduced ability to transmit dengue, even if it has survived the exposed period. Wolbachia introduction has therefore been suggested as a potential dengue control measure. We set up a mathematical model for the system to investigate this suggestion and to evaluate the desirable properties of the Wolbachia strain to be introduced. We show that Wolbachia has excellent potential for dengue control in areas where R 0 is not too large. However, if R 0 is large, Wolbachia strains that reduce but do not eliminate dengue transmission have little effect on endemic steady states or epidemic sizes. Unless control measures to reduce R 0 by reducing mosquito populations are also put in place, it may be worth the extra effort in such cases to introduce Wolbachia strains that eliminate dengue transmission completely.

Keywords

Dengue fever Wolbachia 

Notes

Acknowledgements

The authors would like to thank Ben Adams for useful comments, and the referees for their careful work.

References

  1. Adams, B., & Boots, M. (2006). Modelling the relationship between antibody-dependent enhancement and immunological distance with application to dengue. J. Theor. Biol., 242, 337–346. MathSciNetCrossRefGoogle Scholar
  2. Anderson, R. M., & May, R. M. (1992). Indirectly transmitted microparasites. In Infectious diseases of humans (pp. 374–429). Oxford: Oxford University Press. Google Scholar
  3. Angel, S., Sheppard, S., & Civco, D. (2005). The dynamics of global urban expansion. Washington: Transport and Urban Development Department, World Bank. Google Scholar
  4. Bian, G., Xu, Y., Lu, P., Xie, Y., & Xi, Z. (2010). The endosymbiotic bacterium Wolbachia induces resistance to dengue virus in Aedes aegypti. PLoS Pathog., 6, 1–10. CrossRefGoogle Scholar
  5. Britton, N. F. (2003). Essential mathematical biology. Berlin: Springer. zbMATHCrossRefGoogle Scholar
  6. Caspari, E., & Watson, G. S. (1959). On the evolutionary importance of cytoplasmic sterility in mosquitoes. Evolution, 13, 568–570. CrossRefGoogle Scholar
  7. Chowell, G., Diaz-Dueñas, P., Miller, J. C., Alcazar-Velazco, A., Hyman, J. K., Fenimore, P. W., & Castillo-Chavez, C. (2007). Estimating the reproduction number of dengue fever from spatial epidemic data. Math. Biosci., 208, 571–589. MathSciNetzbMATHCrossRefGoogle Scholar
  8. Diekmann, O., & Heesterbeek, J. A. P. (2000). Wiley series in mathematical and computational biology: Mathematical epidemiology of infectious diseases. New York: Wiley. Google Scholar
  9. Dye, C. (1984). Models for the population dynamics of the yellow fever mosquito, Aedes aegypti. J. Anim. Ecol., 53, 247–268. CrossRefGoogle Scholar
  10. Farkas, J. Z., & Hinow, P. (2010). Structured and unstructured continuous models for Wolbachia infections. Bull. Math. Biol., 72, 2067–2088. MathSciNetzbMATHCrossRefGoogle Scholar
  11. Focks, D. A., Haile, D. G., Daniels, E., & Mount, G. A. (1993). Dynamic life table model for Aedes aegypti (Diptera: Culicidae): simulation results and validation. J. Med. Entomol., 30, 1018–1028. Google Scholar
  12. Focks, D. A., & Barrera, R. (2006). Dengue transmission dynamics: assessment and implications for control. In WHO scientific working group report on dengue (pp. 92–109). Google Scholar
  13. Gubler, D. J. (1998). Dengue and dengue hemorrhagic fever. Clin. Microbiol. Rev., 11, 480–496. Google Scholar
  14. Gurney, W. S. C., Blythe, S. P., & Nisbet, R. M. (1980). Nicholson’s blowflies revisited. Nature, 287, 17–21. CrossRefGoogle Scholar
  15. Hoffmann, A. A., et al. (2011). Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission. Nature, 476, 454–457. CrossRefGoogle Scholar
  16. Hughes, G. L., Koga, R., Xue, P., Fukatsu, T., & Rasgon, J. L. (2011). Wolbachia infections are virulent and inhibit the human malaria parasite Plasmodium falciparum in Anopheles gambiae. PLoS Pathog., 7(5), e1002043. doi: 10.1371/journal.ppat.1002043. CrossRefGoogle Scholar
  17. Keeling, M. J., Jiggins, F. M., & Read, J. M. (2003). The invasion and coexistence of competing Wolbachia strains. Heredity, 91, 382–388. CrossRefGoogle Scholar
  18. Lam, S. K., et al. (2011). Preparing for introduction of a dengue vaccine: recommendations from the 1st dengue v2V Asia–Pacific meeting. Vaccine, 29, 9417–9422. CrossRefGoogle Scholar
  19. Maynard Smith, J. (1974). Models in ecology. Cambridge: Cambridge University Press. zbMATHGoogle Scholar
  20. McMeniman, C. J., Lane, R. V., Cass, B. N., Fong, A. W. C., Sidhu, M., Wang, Y., & O’Neill, S. L. (2009). Stable introduction of life-shortening Wolbachia infection into the mosquito Aedes aegypti. Science, 323, 141–144. CrossRefGoogle Scholar
  21. Newton, E. A., & Reiter, P. (1992). A model of the transmission of dengue fever with an evaluation of the impact of ultra-low volume (ULV) insecticide applications on dengue epidemics. Am. J. Trop. Med. Hyg., 47, 709–720. Google Scholar
  22. Otero, M., & Solari, H. (2010). Stochastic eco-epidemiological model of dengue disease transmission by Aedes aegypti mosquito. Math. Biosci., 223, 32–46. MathSciNetzbMATHCrossRefGoogle Scholar
  23. Schrauber, J. G. (2012). Constraints on the use of lifespan-shortening Wolbachia to control dengue fever. J. Theor. Biol., 297, 26–32. CrossRefGoogle Scholar
  24. Scott, T. W., et al. (2000). Longitudinal studies of Aedes aegypti (Diptera: Culicidae) in Thailand and Puerto Rico: blood feeding frequency. J. Med. Entomol., 30, 94–99. Google Scholar
  25. Sheppard, P. M., Macdonald, W. W., Tonn, R. J., & Grab, B. (1969). The dynamics of an adult population of Aedes aegypti in relation to dengue haemorrhagic fever in Bangkok. J. Anim. Ecol., 38, 661–702. CrossRefGoogle Scholar
  26. Southwood, T. R. E., Murdie, G., Yasuno, M., Tonn, R. J., & Reader, P. M. (1972). Studies on the life budget of Aedes aegypti in Wat Samphaya, Bangkok, Thailand. Bull. World Health Organ., 46, 211–226. Google Scholar
  27. Turelli, M. (2009). Cytoplasmic incompatibility in populations with overlapping generations. Evolution, 64, 232–241. CrossRefGoogle Scholar
  28. Turelli, M., & Hoffmann, A. (1991). Rapid spread of an inherited incompatibility factor in California Drosophila. Nature, 353, 440–442. CrossRefGoogle Scholar
  29. van den Driessche, P., & Watmough, J. (2008). Further notes on the basic reproduction number. In Mathematical epidemiology. Lecture notes in mathematics: Vol. 1945 (pp. 159–178). Berlin: Springer. CrossRefGoogle Scholar
  30. Walker, T., et al. (2011). The wMel Wolbachia strain blocks dengue and invades Aedes aegypti population. Nature, 476, 450–453. CrossRefGoogle Scholar
  31. Walsh, R. K., Facchinelli, L., Ramsey, J. M., Bond, J. G., & Gould, F. (2011). Assessing the impact of density dependence in field populations of Aedes aegypti. J. Vector Ecol., 36, 300–307. CrossRefGoogle Scholar
  32. Watts, D. M., et al. (1987). Effect of temperature on the vector efficiency of Aedes aegypti for dengue 2 virus. Am. J. Trop. Med. Hyg., 36, 143–152. Google Scholar
  33. Werren, J. H. (1997). Biology of Wolbachia. Annu. Rev. Entomol., 42, 587–609. CrossRefGoogle Scholar
  34. Werren, J. H., Guo, L., & Windsor, D. W. (1995). Distribution of Wolbachia among neotropical arthropods. Proc. R. Soc. Lond. B, 262, 197–204. CrossRefGoogle Scholar
  35. Werren, J. H., Baldo, L., & Clark, M. E. (2008). Wolbachia: master manipulators of invertebrate biology. Nat. Rev. Microbiol., 6, 741–751. CrossRefGoogle Scholar
  36. World Health Organisation (2012). Impact of dengue, WHO website, accessed 2 April 2012, http://www.who.int/csr/disease/dengue/impact/en/.
  37. Xi, Z., Khoo, C. C., & Dobson, S. L. (2005). Wolbachia establishment and invasion in an Aedes aegypti laboratory population. Science, 310, 326–328. CrossRefGoogle Scholar

Copyright information

© Society for Mathematical Biology 2013

Authors and Affiliations

  1. 1.Department of Mathematical SciencesUniversity of BathBathUK
  2. 2.Centre for Mathematical BiologyUniversity of BathBathUK

Personalised recommendations