# Modelling the Use of *Wolbachia* to Control Dengue Fever Transmission

- 1.3k Downloads
- 34 Citations

## Abstract

Experiments and field trials have shown that the intracellular bacterium *Wolbachia* may be introduced into populations of the mosquito *Aedes aegypti*, the primary vector for dengue fever. In the absence of *Wolbachia*, a mosquito acquiring the dengue virus from an infected human enters an exposed (infected but not infectious) period before becoming infectious itself. A *Wolbachia*-infected mosquito that acquires dengue (i) may have a reduced lifespan, so that it is less likely to survive the exposed period and become infectious, and (ii) may have a reduced ability to transmit dengue, even if it has survived the exposed period. *Wolbachia* introduction has therefore been suggested as a potential dengue control measure. We set up a mathematical model for the system to investigate this suggestion and to evaluate the desirable properties of the *Wolbachia* strain to be introduced. We show that *Wolbachia* has excellent potential for dengue control in areas where *R* _{0} is not too large. However, if *R* _{0} is large, *Wolbachia* strains that reduce but do not eliminate dengue transmission have little effect on endemic steady states or epidemic sizes. Unless control measures to reduce *R* _{0} by reducing mosquito populations are also put in place, it may be worth the extra effort in such cases to introduce *Wolbachia* strains that eliminate dengue transmission completely.

## Keywords

Dengue fever Wolbachia## Notes

### Acknowledgements

The authors would like to thank Ben Adams for useful comments, and the referees for their careful work.

## References

- Adams, B., & Boots, M. (2006). Modelling the relationship between antibody-dependent enhancement and immunological distance with application to dengue.
*J. Theor. Biol.*,*242*, 337–346. MathSciNetCrossRefGoogle Scholar - Anderson, R. M., & May, R. M. (1992). Indirectly transmitted microparasites. In
*Infectious diseases of humans*(pp. 374–429). Oxford: Oxford University Press. Google Scholar - Angel, S., Sheppard, S., & Civco, D. (2005).
*The dynamics of global urban expansion*. Washington: Transport and Urban Development Department, World Bank. Google Scholar - Bian, G., Xu, Y., Lu, P., Xie, Y., & Xi, Z. (2010). The endosymbiotic bacterium
*Wolbachia*induces resistance to dengue virus in*Aedes aegypti*.*PLoS Pathog.*,*6*, 1–10. CrossRefGoogle Scholar - Britton, N. F. (2003).
*Essential mathematical biology*. Berlin: Springer. zbMATHCrossRefGoogle Scholar - Caspari, E., & Watson, G. S. (1959). On the evolutionary importance of cytoplasmic sterility in mosquitoes.
*Evolution*,*13*, 568–570. CrossRefGoogle Scholar - Chowell, G., Diaz-Dueñas, P., Miller, J. C., Alcazar-Velazco, A., Hyman, J. K., Fenimore, P. W., & Castillo-Chavez, C. (2007). Estimating the reproduction number of dengue fever from spatial epidemic data.
*Math. Biosci.*,*208*, 571–589. MathSciNetzbMATHCrossRefGoogle Scholar - Diekmann, O., & Heesterbeek, J. A. P. (2000).
*Wiley series in mathematical and computational biology:**Mathematical epidemiology of infectious diseases*. New York: Wiley. Google Scholar - Dye, C. (1984). Models for the population dynamics of the yellow fever mosquito,
*Aedes aegypti*.*J. Anim. Ecol.*,*53*, 247–268. CrossRefGoogle Scholar - Farkas, J. Z., & Hinow, P. (2010). Structured and unstructured continuous models for
*Wolbachia*infections.*Bull. Math. Biol.*,*72*, 2067–2088. MathSciNetzbMATHCrossRefGoogle Scholar - Focks, D. A., Haile, D. G., Daniels, E., & Mount, G. A. (1993). Dynamic life table model for
*Aedes aegypti*(Diptera: Culicidae): simulation results and validation.*J. Med. Entomol.*,*30*, 1018–1028. Google Scholar - Focks, D. A., & Barrera, R. (2006). Dengue transmission dynamics: assessment and implications for control. In
*WHO scientific working group report on dengue*(pp. 92–109). Google Scholar - Gubler, D. J. (1998). Dengue and dengue hemorrhagic fever.
*Clin. Microbiol. Rev.*,*11*, 480–496. Google Scholar - Gurney, W. S. C., Blythe, S. P., & Nisbet, R. M. (1980). Nicholson’s blowflies revisited.
*Nature*,*287*, 17–21. CrossRefGoogle Scholar - Hoffmann, A. A., et al. (2011). Successful establishment of
*Wolbachia*in*Aedes*populations to suppress dengue transmission.*Nature*,*476*, 454–457. CrossRefGoogle Scholar - Hughes, G. L., Koga, R., Xue, P., Fukatsu, T., & Rasgon, J. L. (2011).
*Wolbachia*infections are virulent and inhibit the human malaria parasite*Plasmodium falciparum*in*Anopheles gambiae*.*PLoS Pathog.*,*7*(5), e1002043. doi: 10.1371/journal.ppat.1002043. CrossRefGoogle Scholar - Keeling, M. J., Jiggins, F. M., & Read, J. M. (2003). The invasion and coexistence of competing
*Wolbachia*strains.*Heredity*,*91*, 382–388. CrossRefGoogle Scholar - Lam, S. K., et al. (2011). Preparing for introduction of a dengue vaccine: recommendations from the 1st dengue v2V Asia–Pacific meeting.
*Vaccine*,*29*, 9417–9422. CrossRefGoogle Scholar - Maynard Smith, J. (1974).
*Models in ecology*. Cambridge: Cambridge University Press. zbMATHGoogle Scholar - McMeniman, C. J., Lane, R. V., Cass, B. N., Fong, A. W. C., Sidhu, M., Wang, Y., & O’Neill, S. L. (2009). Stable introduction of life-shortening
*Wolbachia*infection into the mosquito*Aedes aegypti*.*Science*,*323*, 141–144. CrossRefGoogle Scholar - Newton, E. A., & Reiter, P. (1992). A model of the transmission of dengue fever with an evaluation of the impact of ultra-low volume (ULV) insecticide applications on dengue epidemics.
*Am. J. Trop. Med. Hyg.*,*47*, 709–720. Google Scholar - Otero, M., & Solari, H. (2010). Stochastic eco-epidemiological model of dengue disease transmission by
*Aedes aegypti*mosquito.*Math. Biosci.*,*223*, 32–46. MathSciNetzbMATHCrossRefGoogle Scholar - Schrauber, J. G. (2012). Constraints on the use of lifespan-shortening
*Wolbachia*to control dengue fever.*J. Theor. Biol.*,*297*, 26–32. CrossRefGoogle Scholar - Scott, T. W., et al. (2000). Longitudinal studies of
*Aedes aegypti*(Diptera: Culicidae) in Thailand and Puerto Rico: blood feeding frequency.*J. Med. Entomol.*,*30*, 94–99. Google Scholar - Sheppard, P. M., Macdonald, W. W., Tonn, R. J., & Grab, B. (1969). The dynamics of an adult population of
*Aedes aegypti*in relation to dengue haemorrhagic fever in Bangkok.*J. Anim. Ecol.*,*38*, 661–702. CrossRefGoogle Scholar - Southwood, T. R. E., Murdie, G., Yasuno, M., Tonn, R. J., & Reader, P. M. (1972). Studies on the life budget of
*Aedes aegypti*in Wat Samphaya, Bangkok, Thailand.*Bull. World Health Organ.*,*46*, 211–226. Google Scholar - Turelli, M. (2009). Cytoplasmic incompatibility in populations with overlapping generations.
*Evolution*,*64*, 232–241. CrossRefGoogle Scholar - Turelli, M., & Hoffmann, A. (1991). Rapid spread of an inherited incompatibility factor in California
*Drosophila*.*Nature*,*353*, 440–442. CrossRefGoogle Scholar - van den Driessche, P., & Watmough, J. (2008). Further notes on the basic reproduction number. In
*Mathematical epidemiology*.*Lecture notes in mathematics*: Vol.*1945*(pp. 159–178). Berlin: Springer. CrossRefGoogle Scholar - Walker, T., et al. (2011). The
*wMel Wolbachia*strain blocks dengue and invades*Aedes aegypti*population.*Nature*,*476*, 450–453. CrossRefGoogle Scholar - Walsh, R. K., Facchinelli, L., Ramsey, J. M., Bond, J. G., & Gould, F. (2011). Assessing the impact of density dependence in field populations of
*Aedes aegypti*.*J. Vector Ecol.*,*36*, 300–307. CrossRefGoogle Scholar - Watts, D. M., et al. (1987). Effect of temperature on the vector efficiency of
*Aedes aegypti*for dengue 2 virus.*Am. J. Trop. Med. Hyg.*,*36*, 143–152. Google Scholar - Werren, J. H. (1997). Biology of
*Wolbachia*.*Annu. Rev. Entomol.*,*42*, 587–609. CrossRefGoogle Scholar - Werren, J. H., Guo, L., & Windsor, D. W. (1995). Distribution of
*Wolbachia*among neotropical arthropods.*Proc. R. Soc. Lond. B*,*262*, 197–204. CrossRefGoogle Scholar - Werren, J. H., Baldo, L., & Clark, M. E. (2008).
*Wolbachia*: master manipulators of invertebrate biology.*Nat. Rev. Microbiol.*,*6*, 741–751. CrossRefGoogle Scholar - World Health Organisation (2012). Impact of dengue, WHO website, accessed 2 April 2012, http://www.who.int/csr/disease/dengue/impact/en/.
- Xi, Z., Khoo, C. C., & Dobson, S. L. (2005).
*Wolbachia*establishment and invasion in an*Aedes aegypti*laboratory population.*Science*,*310*, 326–328. CrossRefGoogle Scholar