Bulletin of Mathematical Biology

, Volume 76, Issue 4, pp 922–946 | Cite as

A Comparison of Bimolecular Reaction Models for Stochastic Reaction–Diffusion Systems

Original Article

Abstract

Stochastic reaction–diffusion models have become an important tool in studying how both noise in the chemical reaction process and the spatial movement of molecules influences the behavior of biological systems. There are two primary spatially-continuous models that have been used in recent studies: the diffusion limited reaction model of Smoluchowski, and a second approach popularized by Doi. Both models treat molecules as points undergoing Brownian motion. The former represents chemical reactions between two reactants through the use of reactive boundary conditions, with two molecules reacting instantly upon reaching a fixed separation (called the reaction-radius). The Doi model uses reaction potentials, whereby two molecules react with a fixed probability per unit time, λ, when separated by less than the reaction radius. In this work, we study the rigorous relationship between the two models. For the special case of a protein diffusing to a fixed DNA binding site, we prove that the solution to the Doi model converges to the solution of the Smoluchowski model as λ→∞, with a rigorous \(O(\lambda^{-\frac{1}{2} + \epsilon})\) error bound (for any fixed ϵ>0). We investigate by numerical simulation, for biologically relevant parameter values, the difference between the solutions and associated reaction time statistics of the two models. As the reaction-radius is decreased, for sufficiently large but fixed values of λ, these differences are found to increase like the inverse of the binding radius.

Keywords

Stochastic reaction–diffusion Diffusion limited reaction 

References

  1. Andrews, S. S., & Bray, D. (2004). Stochastic simulation of chemical reactions with spatial resolution and single molecule detail. Phys. Biol., 1, 137–151. CrossRefGoogle Scholar
  2. BelHadjAli, H., Amor, A. B., & Brasche, J. F. (2011). Large coupling convergence: overview and new results. In M. Demuth, B. W. Schulze, & I. Witt (Eds.), Operator theory: advances and applications: Vol. 211. Partial differential equations and spectral theory (pp. 73–117). Basel: Springer. CrossRefGoogle Scholar
  3. Demuth, M. (1980). On scattering of diffusion process generators. Lett. Math. Phys., 4(5), 417–424. MathSciNetCrossRefMATHGoogle Scholar
  4. Demuth, M., Jeske, F., & Kirsch, W. (1993). Rate of convergence for large coupling limits by Brownian motion. Ann. Inst. Henri Poincaré, a Phys. Théor., 59(3), 327–355. MathSciNetMATHGoogle Scholar
  5. Doi, M. (1976a). Second quantization representation for classical many-particle system. J. Phys. A, Math. Gen., 9(9), 1465–1477. CrossRefGoogle Scholar
  6. Doi, M. (1976b). Stochastic theory of diffusion-controlled reaction. J. Phys. A, Math. Gen., 9(9), 1479–1495. CrossRefGoogle Scholar
  7. Donev, A., Bulatov, V. V., Oppelstrup, T., Gilmer, G. H., Sadigh, B., & Kalos, M. H. (2010). A first-passage kinetic Monte Carlo algorithm for complex diffusion–reaction systems. J. Comp. Physiol., 229(9), 3214–3236. MathSciNetCrossRefMATHGoogle Scholar
  8. Drawert, B., Engblom, S., & Hellander, A. (2012). URDME: a modular framework for stochastic simulation of reaction-transport processes in complex geometries. BMC Syst. Biol., 6(1), 76. CrossRefGoogle Scholar
  9. Dushek, O., van der Merwe, P. A., & Shahrezaei, V. (2011). Ultrasensitivity in multisite phosphorylation of membrane-anchored proteins. Biophys. J., 100(5), 1189–1197. CrossRefGoogle Scholar
  10. Elf, J., & Ehrenberg, M. (2004). Spontaneous separation of bi-stable biochemical systems into spatial domains of opposite phases. IET Syst. Biol., 1(2), 230–236. CrossRefGoogle Scholar
  11. Erban, R., & Chapman, S. J. (2009). Stochastic modelling of reaction–diffusion processes: algorithms for bimolecular reactions. Phys. Biol., 6(4), 046001. CrossRefGoogle Scholar
  12. Erban, R., Chapman, S. J., & Maini, P. K. (2007). A practical guide to stochastic simulations of reaction-diffusion processes. arXiv:0704.1908 [q-bio.SC].
  13. Fange, D., Berg, O. G., Sjöberg, P., & Elf, J. (2010). Stochastic reaction–diffusion kinetics in the microscopic limit. Proc. Natl. Acad. Sci. USA, 107(46), 19820–19825. CrossRefMATHGoogle Scholar
  14. Fange, D., Mahmutovic, A., & Elf, J. (2012). MesoRD 1.0: stochastic reaction–diffusion simulations in the microscopic limit. Bioinformatics, 28(23), 3155–3157. CrossRefGoogle Scholar
  15. Gardiner, C. W. (1996). Springer series in synergetics: Vol. 13. Handbook of stochastic methods: for physics, chemistry, and the natural sciences (2nd ed.). New York: Springer. MATHGoogle Scholar
  16. Gardiner, C. W., McNeil, K. J., Walls, D. F., & Matheson, I. S. (1976). Correlations in stochastic models of chemical reactions. J. Stat. Phys., 14, 307. CrossRefGoogle Scholar
  17. Gesztesy, F., Gurarie, D., Holder, H., Klaus, M., Sadun, L., Simon, B., & Vogl, P. (1988). Trapping and cascading of eigenvalues in the large coupling limit. Commun. Math. Phys., 118(4), 597–634. CrossRefMathSciNetMATHGoogle Scholar
  18. Girsanov, I. V. (1960). The solution of certain boundary problems for parabolic and elliptic equations with discontinuous coefficients. Sov. Math. Dokl., 1, 1373–1375. MathSciNetMATHGoogle Scholar
  19. Glimm, J., & Jaffe, A. (1987). Quantum physics; a functional integral point of view (2nd ed.). New York: Springer. MATHGoogle Scholar
  20. Hellander, S., Hellander, A., & Petzold, L. (2012). Reaction–diffusion master equation in the microscopic limit. Phys. Rev. E, 85(4), 042901. CrossRefGoogle Scholar
  21. Hepburn, I., Chen, W., Wils, S., & De Schutter, E. (2012). STEPS: efficient simulation of stochastic reaction–diffusion models in realistic morphologies. BMC Syst. Biol., 6(1), 36. CrossRefGoogle Scholar
  22. Isaacson, S. A. (2008). Relationship between the reaction–diffusion master equation and particle tracking models. J. Phys. A, Math. Theor., 41(6), 065003. MathSciNetCrossRefMATHGoogle Scholar
  23. Isaacson, S. A. (2009). The reaction–diffusion master equation as an asymptotic approximation of diffusion to a small target. SIAM J. Appl. Math., 70(1), 77–111. MathSciNetCrossRefMATHGoogle Scholar
  24. Isaacson, S. A. (2012, submitted). A convergent reaction–diffusion master equation. Preprint. arXiv:1211.6772.
  25. Isaacson, S. A., & Isaacson, D. (2009). Reaction–diffusion master equation, diffusion-limited reactions, and singular potentials. Phys. Rev. E, 80(6), 066106. CrossRefGoogle Scholar
  26. Isaacson, S. A., McQueen, D. M., & Peskin, C. S. (2011). The influence of volume exclusion by chromatin on the time required to find specific DNA binding sites by diffusion. Proc. Natl. Acad. Sci. USA, 108(9), 3815–3820. CrossRefGoogle Scholar
  27. Kang, H.-W., Zheng, L., & Othmer, H. G. (2012). A new method for choosing the computational cell in stochastic reaction–diffusion systems. J. Math. Biol., 65(6–7), 1017–1099. MathSciNetCrossRefMATHGoogle Scholar
  28. Keizer, J. (1982). Nonequilibrium statistical thermodynamics and the effect of diffusion on chemical reaction rates. J. Phys. Chem., 86, 5052–5067. CrossRefGoogle Scholar
  29. Kerr, R. A., et al. (2008). Fast Monte Carlo simulation methods for biological reaction–diffusion systems in solution and on surfaces. SIAM J. Sci. Comput., 30(6), 3126–3149. MathSciNetCrossRefMATHGoogle Scholar
  30. Kühner, F., Costa, L. T., Bisch, P. M., Thalhammer, S., Heckl, W. M., & Gaub, H. E. (2004). LexA-DNA bond strength by single molecule force spectroscopy. Biophys. J., 87, 2683–2690. CrossRefGoogle Scholar
  31. Lipkova, J., Zygalakis, K. C., Chapman, S. J., & Erban, R. (2011). Analysis of Brownian Dynamics simulations of reversible bimolecular reactions. SIAM J. Appl. Math., 71(3), 714. MathSciNetCrossRefMATHGoogle Scholar
  32. McQuarrie, D. A. (1967). Stochastic approach to chemical kinetics. J. Appl. Probab., 4, 413–478. MathSciNetCrossRefMATHGoogle Scholar
  33. Nadkarni, S., Bartol, T. M., Stevens, C. F., Sejnowski, T. J., & Levine, H. (2012). Short-term plasticity constrains spatial organization of a hippocampal presynaptic terminal. Proc. Natl. Acad. Sci. USA, 109(36), 14657–14662. CrossRefGoogle Scholar
  34. Olenik, O. A. (1961). Boundary-value problems for linear elliptic and parabolic equations with discontinuous coefficients. Izv. Akad. Nauk SSSR, Ser. Mat., 25(1), 3–20. MathSciNetGoogle Scholar
  35. Smoluchowski, M. V. (1917). Mathematical theory of the kinetics of the coagulation of colloidal solutions. Z. Phys. Chem., 92, 129–168. Google Scholar
  36. Takahashi, K., Tanase-Nicola, S., & ten Wolde, P. R. (2010). Spatio-temporal correlations can drastically change the response of a MAPK pathway. Proc. Natl. Acad. Sci. USA, 107(6), 2473–2478. CrossRefGoogle Scholar
  37. Taylor, M. E. (1996). Applied mathematical sciences: Vol. 116. Partial differential equations II: qualitative studies of linear equations. New York: Springer. MATHGoogle Scholar
  38. Teramoto, E., & Shigesada, N. (1967). Theory of bimolecular reaction processes in liquids. Prog. Theor. Phys., 37(1), 29–51. CrossRefGoogle Scholar
  39. Van Kampen, N. G. (2001). Stochastic processes in physics and chemistry. Amsterdam: North-Holland. MATHGoogle Scholar

Copyright information

© Society for Mathematical Biology 2013

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsBoston UniversityBostonUSA

Personalised recommendations