Bulletin of Mathematical Biology

, Volume 75, Issue 6, pp 906–919 | Cite as

On Circuit Functionality in Boolean Networks

  • Jean-Paul Comet
  • Mathilde Noual
  • Adrien Richard
  • Julio Aracena
  • Laurence Calzone
  • Jacques Demongeot
  • Marcelle Kaufman
  • Aurélien Naldi
  • El Houssine Snoussi
  • Denis Thieffry
Original Article

Abstract

It has been proved, for several classes of continuous and discrete dynamical systems, that the presence of a positive (resp. negative) circuit in the interaction graph of a system is a necessary condition for the presence of multiple stable states (resp. a cyclic attractor). A positive (resp. negative) circuit is said to be functional when it “generates” several stable states (resp. a cyclic attractor). However, there are no definite mathematical frameworks translating the underlying meaning of “generates.” Focusing on Boolean networks, we recall and propose some definitions concerning the notion of functionality along with associated mathematical results.

Keywords

Boolean network Interaction graph Feedback circuit Fixed point Multistability Cyclic attractor 

References

  1. Aracena, J. (2008). Maximum number of fixed points in regulatory Boolean networks. Bull. Math. Biol., 70, 1398–1409. MathSciNetMATHCrossRefGoogle Scholar
  2. Aracena, J., Demongeot, J., & Goles, E. (2004). Positive and negative circuits in discrete neural networks. IEEE Trans. Neural Netw., 15, 77–83. CrossRefGoogle Scholar
  3. Cinquin, O., & Demongeot, J. (2002). Positive and negative feedback: striking a balance between necessary antagonists. J. Theor. Biol., 216, 229–241. MathSciNetCrossRefGoogle Scholar
  4. Demongeot, J., Noual, M., & Sené, S. (2011). Combinatorics of Boolean automata circuits dynamics. Discrete Appl. Math., 160, 398–415. 2012. CrossRefGoogle Scholar
  5. Gouzé, J. (1998). Positive and negative circuits in dynamical systems. J. Biol. Syst., 6, 11–15. MATHCrossRefGoogle Scholar
  6. Naldi, A., Thieffry, D., & Chaouiya, C. (2007). Decision diagrams for the representation and analysis of logical models of genetic networks. In LNCS: Vol. 4695. Computational methods in systems biology (pp. 233–247). Berlin: Springer. CrossRefGoogle Scholar
  7. Plathe, E., Mestl, T., & Omholt, S. (1995). Feedback loops, stability and multistationarity in dynamical systems. J. Biol. Syst., 3, 569–577. CrossRefGoogle Scholar
  8. Remy, E., & Ruet, P. (2006). Positive and negative regulatory circuit inference from multilevel dynamics. In LNCIS: Vol. 341. Positive systems: theory and applications (pp. 263–270). Berlin: Springer. CrossRefGoogle Scholar
  9. Remy, E., & Ruet, P. (2008). From minimal signed circuits to the dynamics of Boolean regulatory networks. Bioinformatics, 24, i220–i226. CrossRefGoogle Scholar
  10. Remy, E., Mossé, B., Chaouiya, C., & Thieffry, D. (2003). A description of dynamical graphs associated to elementary regulatory circuits. Bioinformatics, 19, 172–178. CrossRefGoogle Scholar
  11. Remy, E., Ruet, P., & Thieffry, D. (2008). Graphic requirements for multistability and attractive cycles in a Boolean dynamical framework. Adv. Appl. Math., 41, 335–350. MathSciNetMATHCrossRefGoogle Scholar
  12. Richard, A. (2010). Negative circuits and sustained oscillations in asynchronous automata networks. Adv. Appl. Math., 44, 378–392. MathSciNetMATHCrossRefGoogle Scholar
  13. Richard, A. (2011). Local negative circuits and fixed points in non-expansive Boolean networks. Discrete Appl. Math., 159, 1085–1093. MathSciNetMATHCrossRefGoogle Scholar
  14. Richard, A. (2013). Fixed point theorems for Boolean networks expressed in terms of forbidden subnetworks. arXiv preprint. Google Scholar
  15. Richard, A., & Comet, J.-P. (2007). Necessary conditions for multistationarity in discrete dynamical systems. Discrete Appl. Math., 155, 2403–2413. MathSciNetMATHCrossRefGoogle Scholar
  16. Shih, M.-H., & Dong, J.-L. (2005). A combinatorial analogue of the Jacobian problem in automata networks. Adv. Appl. Math., 34, 30–46. MathSciNetMATHCrossRefGoogle Scholar
  17. Siebert, H. (2009). Deriving behavior of Boolean bioregulatory networks from subnetwork dynamics. Math. Comput. Sci., 2, 421–442. MathSciNetMATHCrossRefGoogle Scholar
  18. Siebert, H. (2011). Analysis of discrete bioregulatory networks using symbolic steady states. Bull. Math. Biol., 73, 873–898. MathSciNetMATHCrossRefGoogle Scholar
  19. Snoussi, E. (1998). Necessary conditions for multistationarity and stable periodicity. J. Biol. Syst., 6, 3–9. MATHCrossRefGoogle Scholar
  20. Snoussi, E., & Thomas, R. (1993). Logical identification of all steady states: the concept of feedback loop characteristic states. Bull. Math. Biol., 55, 973–991. MATHGoogle Scholar
  21. Soulé, C. (2003). Graphical requirements for multistationarity. Complexus, 1, 123–133. CrossRefGoogle Scholar
  22. Soulé, C. (2006). Mathematical approaches to differentiation and gene regulation. C. R. Biol., 329, 13–20. CrossRefGoogle Scholar
  23. Thomas, R. (1973). Boolean formalization of genetic control circuits. J. Theor. Biol., 42, 563–585. CrossRefGoogle Scholar
  24. Thomas, R. (1981). On the relation between the logical structure of systems and their ability to generate multiple steady states or sustained oscillations. In Springer series in synergies: Vol. 9. Numerical methods in the study of critical phenomena (pp. 180–193). Berlin: Springer. CrossRefGoogle Scholar
  25. Thomas, R., & Kaufman, M. (2001). Multistationarity, the basis of cell differentiation and memory. II. Logical analysis of regulatory networks in terms of feedback circuits. Chaos, 11, 180–195. MathSciNetMATHCrossRefGoogle Scholar
  26. Thomas, R., Thieffry, D., & Kaufman, M. (1995). Dynamical behavior of biological regulatory networks—I. Biological role of feedback loops and practical use of the concept of the loop-characteristic state. Bull. Math. Biol., 57, 247–276. MATHGoogle Scholar

Copyright information

© Society for Mathematical Biology 2013

Authors and Affiliations

  • Jean-Paul Comet
    • 1
  • Mathilde Noual
    • 1
  • Adrien Richard
    • 1
  • Julio Aracena
    • 2
  • Laurence Calzone
    • 3
  • Jacques Demongeot
    • 4
    • 5
  • Marcelle Kaufman
    • 6
  • Aurélien Naldi
    • 7
  • El Houssine Snoussi
    • 8
  • Denis Thieffry
    • 9
  1. 1.Lab. I3S UMR CNRS 7271Université Nice-Sophia AntipolisSophia AntipolisFrance
  2. 2.CI2MA and Departamento de Ingeniería MatemáticaUniversidad de ConcepciónConcepciónChile
  3. 3.U900 INSERM, Mines ParisTechInstitut CurieParisFrance
  4. 4.AGIM CNRS FRE 3405Université Joseph Fourier-Grenoble 1La TroncheFrance
  5. 5.IXXI, Institut Rhône-Alpin des Systèmes ComplexesLyonFrance
  6. 6.Unit of Theoretical and Computational BiologyUniversité Libre de BruxellesBrusselsBelgium
  7. 7.Centre Intégratif de GénomiqueUNIL-Université de LausanneLausanneSwitzerland
  8. 8.Université Mohammed VRabatMorocco
  9. 9.Institut de Biology de l’ENS (IBENS) INSERM U1024 & CNRS UMR 8197École Normale SupérieureParisFrance

Personalised recommendations