Advertisement

Bulletin of Mathematical Biology

, Volume 75, Issue 3, pp 523–542 | Cite as

Modeling the Spatial Spread of Rift Valley Fever in Egypt

  • Daozhou Gao
  • Chris Cosner
  • Robert Stephen Cantrell
  • John C. Beier
  • Shigui RuanEmail author
Original Article

Abstract

Rift Valley fever (RVF) is a severe viral zoonosis in Africa and the Middle East that harms both human health and livestock production. It is believed that RVF in Egypt has been repeatedly introduced by the importation of infected animals from Sudan. In this paper, we propose a three-patch model for the process by which animals enter Egypt from Sudan, are moved up the Nile, and then consumed at population centers. The basic reproduction number for each patch is introduced and then the threshold dynamics of the model are established. We simulate an interesting scenario showing a possible explanation of the observed phenomenon of the geographic spread of RVF in Egypt.

Keywords

Rift Valley fever Patch model Egypt Basic reproduction number Threshold dynamics 

Notes

Acknowledgement

We thank two anonymous referees for their valuable comments and suggestions which led to an improvement of our original manuscript. Research was supported by the National Institute of Health (NIH) grant R01GM093345.

References

  1. Abd el-Rahim, I. H., Abd el-Hakim, U., & Hussein, M. (1999). An epizootic of Rift Valley fever in Egypt in 1997. Rev. Sci. Tech., 18, 741–748. Google Scholar
  2. Abdo-Salem, S., Tran, A., Grosbois, V., Gerbier, G., Al-Qadasi, M., Saeed, K., Etter, E., Thiry, E., Roger, F., & Chevalier, V. (2011a). Can environmental and socioeconomic factors explain the recent emergence of Rift Valley fever in Yemen, 2000–2001? Vector-Borne Zoonotic Dis., 11, 773–779. CrossRefGoogle Scholar
  3. Abdo-Salem, S., Waret-Szkuta, A., Roger, F., Olive, M., Saeed, K., & Chevalier, V. (2011b). Risk assessment of the introduction of Rift Valley fever from the Horn of Africa to Yemen via legal trade of small ruminants. Trop. Anim. Health Prod., 43, 471–480. CrossRefGoogle Scholar
  4. Anyamba, A., Chretien, J.-P., Small, J., Tucker, C. J., Formenty, P. B., Richardson, J. H., Britch, S. C., Schnabel, D. C., Erickson, R. L., & Linthicum, K. J. (2009). Prediction of a Rift Valley fever outbreak. Proc. Natl. Acad. Sci. USA, 106, 955–959. CrossRefGoogle Scholar
  5. Chamchod, F., Cantrell, R. S., Cosner, C., Hassan, A., Beier, J. C., & Ruan, S. (2012, submitted). A modeling approach to investigate epizootic outbreaks and enzootic maintenance of Rift Valley fever virus. Google Scholar
  6. Chitnis, N., Hyman, J. M., & Cushing, J. M. (2008). Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model. Bull. Math. Biol., 70, 1272–1296. MathSciNetzbMATHCrossRefGoogle Scholar
  7. Daubney, R., Hudson, J. R., & Granham, P. C. (1931). Enzootic hepatitis or Rift Valley fever: an undescribed virus disease of sheep cattle and man from East Africa. J. Pathol. Bacteriol., 34, 545–579. CrossRefGoogle Scholar
  8. Favier, C., Chalvet-Monfray, K., Sabatier, P., Lancelot, R., Fontenille, D., & Dubois, M. A. (2006). Rift Valley fever in West Africa: the role of space in endemicity. Trop. Med. Int. Health, 11, 1878–1888. CrossRefGoogle Scholar
  9. Gad, A. M., Feinsod, F. M., Allam, I. H., Eisa, M., Hassan, A. N., Soliman, B. A., el Said, S., & Saah, A. J. (1986). A possible route for the introduction of Rift Valley fever virus into Egypt during 1977. J. Trop. Med. Hyg., 89, 233–236. Google Scholar
  10. Gaff, H. D., Hartley, D. M., & Leahy, N. P. (2007). An epidemiological model of Rift Valley Fever. Electron. J. Differ. Equ., 115, 1–12. MathSciNetGoogle Scholar
  11. Gao, D., & Ruan, S. (2011). An SIS patch model with variable transmission coefficients. Math. Biosci., 232, 110–115. MathSciNetzbMATHCrossRefGoogle Scholar
  12. Hoogstraal, H., Meegan, J. M., Khalil, G. M., & Adham, F. K. (1979). The Rift Valley fever epizootic in Egypt 1977–78. II. Ecological and entomological studies. Trans. R. Soc. Trop. Med. Hyg., 73, 624–629. CrossRefGoogle Scholar
  13. Ikegami, T., & Makinob, S. (2009). Rift Valley fever vaccines. Vaccine, 27, D69–D72. CrossRefGoogle Scholar
  14. Kamal, S. A. (2011). Observations on Rift Valley fever virus and vaccines in Egypt. Virol. J., 8, 532. CrossRefGoogle Scholar
  15. LaSalle, J. P. (1976). The stability of dynamical systems. Philadelphia: SIAM. zbMATHCrossRefGoogle Scholar
  16. Li, M. Y., & Muldowney, J. S. (1996). A geometric approach to global-stability problems. SIAM J. Math. Anal., 27, 1070–1083. MathSciNetzbMATHCrossRefGoogle Scholar
  17. Linthicum, K. J., Anyamba, A., Tucker, C. J., Kelley, P. W., Myers, M. F., & Peters, C. J. (1999). Climate and satellite indicators to forecast Rift Valley fever epidemics in Kenya. Science, 285, 397–400. CrossRefGoogle Scholar
  18. Meegan, J. M. (1979). The Rift Valley fever epizootic in Egypt 1977–78: 1. Description of the epizootic and virological studies. Trans. R. Soc. Trop. Med. Hyg., 73, 618–623. CrossRefGoogle Scholar
  19. Meegan, J. M., Khalil, G. M., Hoogstraal, H., & Adham, F. K. (1980). Experimental transmission and field isolation studies implicating Culex pipiens as a vector of Rift Valley fever virus in Egypt. Am. J. Trop. Med. Hyg., 29, 1405–1410. Google Scholar
  20. Métras, R., Collins, L. M., White, R. G., Alonso, S., Chevalier, V., Thuranira-McKeever, C., & Pfeiffer, D. U. (2011). Rift Valley fever epidemiology, surveillance, and control: what have models contributed? Vector-Borne Zoonotic Dis., 11, 761–771. CrossRefGoogle Scholar
  21. Mpeshe, S. C., Haario, H., & Tchuenche, J. M. (2011). A mathematical model of Rift Valley fever with human host. Acta Biotheor., 59, 231–250. CrossRefGoogle Scholar
  22. Paweska, J. T., Mortimer, E., Leman, P. A., & Swanepoel, R. (2005). An inhibition enzyme-linked immunosorbent assay for the detection of antibody to Rift Valley fever virus in humans, domestic and wild ruminants. J. Virol. Methods, 127, 10–18. CrossRefGoogle Scholar
  23. Smith, H. L., & Waltman, P. (1995). The theory of the chemostat. Cambridge: Cambridge University Press. zbMATHCrossRefGoogle Scholar
  24. Thieme, H. R. (1993). Persistence under relaxed point-dissipativity (with application to an endemic model). SIAM J. Math. Anal., 24, 407–435. MathSciNetzbMATHCrossRefGoogle Scholar
  25. van den Driessche, P., & Watmough, J. (2002). Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci., 180, 29–48. MathSciNetzbMATHCrossRefGoogle Scholar
  26. World Health Organization (2010). Rift Valley fever, fact sheet no. 207. http://www.who.int/mediacentre/factsheets/fs207/en/.
  27. Xue, L., Scott, H. M., Cohnstaedt, L. W., & Scoglio, C. (2012). A network-based meta-population approach to model Rift Valley fever epidemics. J. Theor. Biol., 306, 129–144. MathSciNetCrossRefGoogle Scholar
  28. Yang, H., Wei, H., & Li, X. (2010). Global stability of an epidemic model for vector-borne disease. J. Syst. Sci. Complex., 23, 279–292. MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Society for Mathematical Biology 2013

Authors and Affiliations

  • Daozhou Gao
    • 1
  • Chris Cosner
    • 2
  • Robert Stephen Cantrell
    • 2
  • John C. Beier
    • 3
  • Shigui Ruan
    • 2
    Email author
  1. 1.Francis I. Proctor Foundation for Research in OphthalmologyUniversity of CaliforniaSan FranciscoUSA
  2. 2.Department of MathematicsUniversity of MiamiCoral GablesUSA
  3. 3.Department of Epidemiology and Public Health, Miller School of MedicineUniversity of MiamiMiamiUSA

Personalised recommendations