Bulletin of Mathematical Biology

, Volume 75, Issue 3, pp 466–490

A Class of Pairwise Models for Epidemic Dynamics on Weighted Networks

  • Prapanporn Rattana
  • Konstantin B. Blyuss
  • Ken T. D. Eames
  • Istvan Z. Kiss
Original Article

Abstract

In this paper, we study the SIS (susceptible–infected–susceptible) and SIR (susceptible–infected–removed) epidemic models on undirected, weighted networks by deriving pairwise-type approximate models coupled with individual-based network simulation. Two different types of theoretical/synthetic weighted network models are considered. Both start from non-weighted networks with fixed topology followed by the allocation of link weights in either (i) random or (ii) fixed/deterministic way. The pairwise models are formulated for a general discrete distribution of weights, and these models are then used in conjunction with stochastic network simulations to evaluate the impact of different weight distributions on epidemic thresholds and dynamics in general. For the SIR model, the basic reproductive ratio R0 is computed, and we show that (i) for both network models R0 is maximised if all weights are equal, and (ii) when the two models are ‘equally-matched’, the networks with a random weight distribution give rise to a higher R0 value. The models with different weight distributions are also used to explore the agreement between the pairwise and simulation models for different parameter combinations.

Keywords

Weighted-network Pairwise model 

References

  1. Anderson, R. M., & May, R. M. (1992). Infectious diseases of humans. Oxford: Oxford University Press. Google Scholar
  2. Ball, F., & Neal, P. (2008). Network epidemic models with two levels of mixing. Math. Biosci., 212, 69–87. MathSciNetMATHCrossRefGoogle Scholar
  3. Barrat, A., Barthélemy, M., Pastor-Satorras, R., & Vespignani, A. (2004a). The architecture of complex weighted networks. Proc. Natl. Acad. Sci. USA, 101, 3747–3752. CrossRefGoogle Scholar
  4. Barrat, A., Barthélemy, M., & Vespignani, A. (2004b). Weighted evolving networks: coupling topology and weight dynamics. Phys. Rev. Lett., 92, 228701. CrossRefGoogle Scholar
  5. Barrat, A., Barthélemy, M., & Vespignani, A. (2004c). Modeling the evolution of weighted networks. Phys. Rev. E, 70, 066149. Google Scholar
  6. Barrat, A., Barthélemy, M., & Vespignani, A. (2005). The effects of spatial constraints on the evolution of weighted complex networks. J. Stat. Mech., P05003. Google Scholar
  7. Beutels, P., Shkedy, Z., Aerts, M., & Van Damme, P. (2006). Social mixing patterns for transmission models of close contact infections: exploring self-evaluation and diary-based data collection through a web-based interface. Epidemiol. Infect., 134, 1158–1166. CrossRefGoogle Scholar
  8. Blyuss, K. B., & Kyrychko, Y. N. (2005). On a basic model of a two-disease epidemic. Appl. Math. Comput., 160, 177–187. MathSciNetMATHCrossRefGoogle Scholar
  9. Blyuss, K. B., & Kyrychko, Y. N. (2010). Stability and bifurcations in an epidemic model with varying immunity period. Bull. Math. Biol., 72, 490–505. MathSciNetMATHCrossRefGoogle Scholar
  10. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., & Hwang, D.-U. (2006). Complex networks: structure and dynamics. Phys. Rep., 424, 175–308. MathSciNetCrossRefGoogle Scholar
  11. Britton, T., Deijfen, M., & Liljeros, F. (2011). A weighted configuration model and inhomogeneous epidemics. J. Stat. Phys., 145, 1368–1384. MathSciNetMATHCrossRefGoogle Scholar
  12. Britton, T., & Lindenstrand, D. (2012). Inhomogeneous epidemics on weighted networks. Math. Biosci., 260, 124–131. CrossRefGoogle Scholar
  13. Colizza, V., Barrat, A., Barthélemy, M., Valleron, A.-J., & Vespignani, A. (2007). Modelling the worldwide spread of pandemic influenza: baseline case and containment interventions. PLoS Med., 4, 95–110. CrossRefGoogle Scholar
  14. Cooper, B. S., Pitman, R. J., Edmunds, W. J., & Gay, N. J. (2006). Delaying the international spread of pandemic influenza. PLoS Med., 3, e212. CrossRefGoogle Scholar
  15. Danon, L., Ford, A. P., House, T., Jewell, C. P., Keeling, M. J., Roberts, G. O., Ross, J. V., & Vernon, M. C. (2011). Networks and the epidemiology of infectious disease. Interdiscip. Perspect. Infect. Dis., 2011, 284909. Google Scholar
  16. Deijfen, M. (2011). Epidemics and vaccination on weighted graphs. Math. Biosci., 232, 57–65. MathSciNetMATHCrossRefGoogle Scholar
  17. Diekmann, O., & Heesterbeek, J. A. P. (2000). Mathematical epidemiology of infectious diseases: model building, analysis and interpretation. Chichester: Wiley. Google Scholar
  18. Diekmann, O., Heesterbeek, J. A. P., & Metz, J. A. J. (1990). On the definition and the computation of the basic reproduction ratio R 0, in models for infectious diseases in heterogeneous populations. J. Math. Biol., 28, 365–382. MathSciNetMATHCrossRefGoogle Scholar
  19. Dorogovtsev, S. N., & Mendes, J. F. F. (2003). Evolution of networks: from biological nets to the Internet and WWW. Oxford: Oxford University Press. MATHGoogle Scholar
  20. Eames, K. T. D. (2008). Modelling disease spread through random and regular contacts in clustered populations. Theor. Popul. Biol., 73, 104–111. MATHCrossRefGoogle Scholar
  21. Eames, K. T. D., & Keeling, M. J. (2002). Modeling dynamic and network heterogeneities in the spread of sexually transmitted diseases. Proc. Natl. Acad. Sci. USA, 99, 13330–13335. CrossRefGoogle Scholar
  22. Eames, K. T. D., Read, J. M., & Edmunds, W. J. (2009). Epidemic prediction and control in weighted networks. Epidemics, 1, 70–76. CrossRefGoogle Scholar
  23. Edmunds, W. J., O’Callaghan, C. J., & Nokes, D. J. (1997). Who mixes with whom? A method to determine the contact patterns of adults that may lead to the spread of airborne infections. Proc. R. Soc. Lond. B, Biol. Sci., 264, 949–957. CrossRefGoogle Scholar
  24. Eubank, S., Guclu, H., Kumar, V. S. A., Marathe, M. V., Srinivasan, A., Toroczkai, Z., & Wang, N. (2004). Modelling disease outbreak in realistic urban social networks. Nature, 429, 180–184. CrossRefGoogle Scholar
  25. Garlaschelli, D. (2009). The weighted random graph model. New J. Phys., 11, 073005. CrossRefGoogle Scholar
  26. Gilbert, M., Mitchell, A., Bourn, D., Mawdsley, J., Clifton-Hadley, R., & Wint, W. (2005). Cattle movements and bovine tuberculosis in Great Britain. Nature, 435, 491–496. CrossRefGoogle Scholar
  27. Gillespie, D. T. (1977). Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem., 81, 2340–2361. CrossRefGoogle Scholar
  28. Hatzopoulos, V., Taylor, M., Simon, P. L., & Kiss, I. Z. (2011). Multiple sources and routes of information transmission: implications for epidemic dynamics. Math. Biosci., 231, 197–209. MathSciNetMATHCrossRefGoogle Scholar
  29. House, T., Davies, G., Danon, L., & Keeling, M. J. (2009). A motif-based approach to network epidemics. Bull. Math. Biol., 71, 1693–1706. MathSciNetMATHCrossRefGoogle Scholar
  30. House, T., & Keeling, M. J. (2011). Insights from unifying modern approximations to infections on networks. J. R. Soc. Interface, 8, 67–73. CrossRefGoogle Scholar
  31. Joo, J., & Lebowitz, J. L. (2004). Behavior of susceptible-infected-susceptible epidemics on heterogeneous networks with saturation. Phys. Rev. E, 69, 066105. MathSciNetGoogle Scholar
  32. Keeling, M. J. (1999). The effects of local spatial structure on epidemiological invasions. Proc. R. Soc. Lond. B, Biol. Sci., 266, 859–867. CrossRefGoogle Scholar
  33. Keeling, M. J., & Eames, K. T. D. (2005). Networks and epidemic models. J. R. Soc. Interface, 2, 295–307. CrossRefGoogle Scholar
  34. Keeling, M. J., & Rohani, P. (2007). Modeling infectious diseases in humans and animals. Princeton: Princeton University Press. Google Scholar
  35. Kiss, I. Z., Green, D. M., & Kao, R. R. (2006). The effect of contact heterogeneity and multiple routes of transmission on final epidemic size. Math. Biosci., 203, 124–136. MathSciNetMATHCrossRefGoogle Scholar
  36. Kiss, I. Z., Cassell, J., Recker, M., & Simon, P. L. (2010). The impact of information transmission on epidemic outbreaks. Math. Biosci., 225, 1–10. MathSciNetMATHCrossRefGoogle Scholar
  37. Li, C., & Chen, G. (2004). A comprehensive weighted evolving network model. Physica A, 343, 288–294. Google Scholar
  38. Moreno, Y., Pastor-Satorras, R., & Vespignani, A. (2002). Epidemic outbreaks in complex heterogeneous networks. Eur. Phys. J. B, 26, 521–529. Google Scholar
  39. Newman, M. E. J. (2002). Spread of epidemic disease on networks. Phys. Rev. E, 66, 016128. MathSciNetCrossRefGoogle Scholar
  40. Olinky, R., & Stone, L. (2004). Unexpected epidemic thresholds in heterogeneous networks: the role of disease transmission. Phys. Rev. E, 70, 030902(R). CrossRefGoogle Scholar
  41. Pastor-Satorras, R., & Vespignani, A. (2001a). Epidemic spreading in scale-free networks. Phys. Rev. Lett., 86, 3200–3202. CrossRefGoogle Scholar
  42. Pastor-Satorras, R., & Vespignani, A. (2001b). Epidemic dynamics and endemic states in complex networks. Phys. Rev. E, 63, 066117. CrossRefGoogle Scholar
  43. Rand, D. A. (1999). Correlation equations and pair approximations for spatial ecologies. Quart. - Cent. Wiskd. Inform., 12, 329–368. MATHGoogle Scholar
  44. Read, J. M., Eames, K. T. D., & Edmunds, W. J. (2008). Dynamic social networks and the implications for the spread of infectious disease. J. R. Soc. Interface, 5, 1001–1007. CrossRefGoogle Scholar
  45. Riley, S. (2007). Large-scale spatial-transmission models of infectious disease. Science, 316, 1298–1301. CrossRefGoogle Scholar
  46. Riley, S., & Ferguson, N. M. (2006). Smallpox transmission and control: spatial dynamics in great Britain. Proc. Natl. Acad. Sci. USA, 103, 12637–12642. CrossRefGoogle Scholar
  47. Sharkey, K. J., Fernandez, C., Morgan, K. L., Peeler, E., Thrush, M., Turnbull, J. F., & Bowers, R. G. (2006). Pair-level approximations to the spatio-temporal dynamics of epidemics on asymmetric contact networks. J. Math. Biol., 53, 61–85. MathSciNetMATHCrossRefGoogle Scholar
  48. Wang, S., & Zhang, C. (2004). Weighted competition scale-free network. Phys. Rev. E, 70, 066127. Google Scholar
  49. Yang, Z., & Zhou, T. (2012). Epidemic spreading in weighted networks: an edge-based mean-field solution. Phys. Rev. E, 85, 056106. MathSciNetGoogle Scholar
  50. Yang, R., Zhou, T., Xie, Y.-B., Lai, Y.-C., & Wang, B.-H. (2008). Optimal contact process on complex networks. Phys. Rev. E, 78, 066109. CrossRefGoogle Scholar

Copyright information

© Society for Mathematical Biology 2013

Authors and Affiliations

  • Prapanporn Rattana
    • 1
  • Konstantin B. Blyuss
    • 1
  • Ken T. D. Eames
    • 2
  • Istvan Z. Kiss
    • 1
  1. 1.School of Mathematical and Physical Sciences, Department of MathematicsUniversity of SussexFalmer, BrightonUK
  2. 2.The Centre for the Mathematical Modelling of Infectious DiseasesLondon School of Hygiene and Tropical MedicineLondonUK

Personalised recommendations