Bulletin of Mathematical Biology

, Volume 75, Issue 1, pp 82–93 | Cite as

The Impact of Hepatitis A Virus Infection on Hepatitis C Virus Infection: A Competitive Exclusion Hypothesis

  • Marcos Amaku
  • Francisco Antonio Bezerra Coutinho
  • Eleazar Chaib
  • Eduardo Massad
Original Article

Abstract

We address the observation that, in some cases, patients infected with the hepatitis C virus (HCV) are cleared of HCV when super-infected with the hepatitis A virus (HAV). We hypothesise that this phenomenon can be explained by the competitive exclusion principle, including the action of the immune system, and show that the inclusion of the immune system explains both the elimination of one virus and the co-existence of both infections for a certain range of parameters. We discuss the potential clinical implications of our findings.

Keywords

Hepatitis A Hepatitis C Competitive exclusion principle Mathematical models 

References

  1. Ajelli, M., Iannelli, M., Manfredi, P., & degli Atti, M. L. C. (2008). Basic mathematical models for the temporal dynamics of HAV in medium-endemicity Italian areas. Vaccine, 26, 1697–1707. CrossRefGoogle Scholar
  2. Amaku, M., Burattini, M. N., Coutinho, F. A. B., & Massad, E. (2010a). Modeling the dynamics of viral infection considering competition within individual hosts and at population levels: the effect of treatment. Bull. Math. Biol., 72(5), 1284–1314. MathSciNetCrossRefGoogle Scholar
  3. Amaku, M., Burattini, M. N., Coutinho, F. A. B., & Massad, E. (2010b). Modeling the competition between viruses in a complex plant-pathogen system. Phytopathology, 100, 1042–1047. CrossRefGoogle Scholar
  4. Anderson, R. M., & May, R. M. (1991). Infectious diseases of humans: dynamics and control. Oxford: Oxford University Press. Google Scholar
  5. Andraud, M., Lejeune, O., Musoro, J. Z., Ogunjimi, B., Beutels, P., et al. (2012). Living on three time scales: the dynamics of plasma cell and antibody populations illustrated for hepatitis A virus. PLoS Comput. Biol., 8(3), e1002418. doi:10.1371/journal.pcbi.1002418. MathSciNetCrossRefGoogle Scholar
  6. Bremermann, H. J., & Thieme, H. R. (1988). A competitive exclusion principle for pathogen virulence. J. Math. Biol., 27, 179–190. MathSciNetCrossRefGoogle Scholar
  7. Burattini, M. N., Coutinho, F. A. B., & Massad, E. (2008). Viral evolution and the competitive exclusion principle. Biosci. Hypotheses, 1(3), 168–171. CrossRefGoogle Scholar
  8. Dahari, H., Ribeiro, R. M., & Perelson, A. S. (2007). Triphasic decline of hepatitis C virus RNA during antiviral therapy. Hepatology, 46(1), 16–21. CrossRefGoogle Scholar
  9. Dahari, H., Layden-Almer, J. E., Kallwitz, E., Ribeiro, R. M., Cotler, S. J., Layden, T. J., & Perelson, A. S. (2009). A mathematical model of hepatitis C virus dynamics in patients with high baseline viral loads or advanced liver disease. Gastroenterology, 136, 1402–1409. CrossRefGoogle Scholar
  10. Deterding, K., Tegtmeyer, T., Cornberg, M., Hadem, J., Potthoff, A., Böker, K. H. W., Tillmann, H. L., Manns, M. P., & Wedemeyer, H. (2006). Hepatitis A virus infection suppresses hepatitis C virus replication and may lead to clearance of HCV. J. Hepatol., 45, 770–778. CrossRefGoogle Scholar
  11. Edelstein-Keshet, L. (2005). Mathematical models in biology. Philadelphia: SIAM. CrossRefMATHGoogle Scholar
  12. Gruener, N. H. Jung, M. C., Ulsenheimer, A., Gerlach, T. J., Diepolder, H. M., Schirren, C. A., Hoffman, R., Wächtler, M., Backmund, M., & Pape, G. R. (2002). Hepatitis C virus eradication associated with hepatitis B virus superinfection and development of a hepatitis B virus specific T cell response. J. Hepatol., 37, 866–869. CrossRefGoogle Scholar
  13. Jeger, M. J., van den Bosch, F., & Madden, L. V. (2011). Modelling virus and host-limitation in vectored plant disease epidemics. Virus Res., 159, 215–222. CrossRefGoogle Scholar
  14. Lecoq, H., Fabre, F., Joannon, B., Wipf-Scheibel, C., Chandeysson, C., Schoeny, A., & Desbiez, C. (2011). Search for factors involved in the rapid shift in watermelon mosaic virus (WMV) populations in South-eastern France. Virus Res., 159, 115–123. CrossRefGoogle Scholar
  15. Liaw, Y. F., Tsai, S. L., Chang, J. J., Sheen, I. S., Chien, R. N., Lin, D. G., & Chu, C. M. (1994). Displacement of hepatitis B virus by hepatitis C virus as the cause of continuing chronic hepatitis. Gastroenterology, 106, 1048–1053. Google Scholar
  16. Lopez, L. F., Coutinho, F. A. B., Burattini, M. N., & Massad, E. (2002). Threshold conditions for infection persistence in complex host-vectors interactions. C. R. Biol. Acad. Sci. Paris, 325, 1073–1084. Google Scholar
  17. Marcos, R., Monteiro, R. A. F., & Rocha, E. (2005). Design-based stereological estimation of hepatocyte number, by combining the smooth optical fractionator and immunocytochemistry with anti-carcinoembryonic antigen polyclonal antibodies. Liver Int., 26, 116–124. CrossRefGoogle Scholar
  18. May, R. M. (1974). Stability and complexity in model ecosystems (2nd ed.). Princeton: Princeton University Press. Google Scholar
  19. McGehee, R., & Armstrong, R. A. (1977). Some mathematical problems concerning the ecological principle of competitive exclusion. J. Differ. Equ., 23, 30–52. MathSciNetCrossRefMATHGoogle Scholar
  20. Nelson, D. R., Marousi, C. G., & Davis, G. L. (1997). The role of hepatitis C virus-specific cytotoxic T lymphocytes in chronic hepatitis C. J. Immunol., 158, 1473–1481. Google Scholar
  21. Nowak, M., & May, R. M. (2001). Virus dynamics. Mathematical principles of immunology and virology. Oxford: Oxford University Press. Google Scholar
  22. Power, A. (1996). Competition between viruses in a complex plant-pathogen system. Ecology, 77(4), 1004–1010. MathSciNetCrossRefGoogle Scholar
  23. Rehermann, B., Chang, K. M., & McHutchinson, J. G. (1996). Quantitative analysis of the peripheral blood cytotoxic T lymphocyte response in patients with chronic hepatitis C virus infection. J. Clin. Invest., 98, 1432–1440. CrossRefGoogle Scholar
  24. Rong, L., & Perelson, A. S. (2010). Treatment of hepatitis C virus infection with interferon and small molecule direct antivirals: viral kinetics and modeling. Crit. Rev. Immunol., 30(2), 131–148. CrossRefGoogle Scholar
  25. Sagnelli, E., Coppola, N., Marrocco, C., Onofrio, M., Sagnelli, C., Coviello, G., Scolastico, C., & Filippini, P. (2006). Hepatitis C virus superinfection in hepatitis B virus chronic carriers: a reciprocal viral interaction and variable clinical course. J. Clin. Virol., 35, 317–320. CrossRefGoogle Scholar
  26. Thomas, D. L., Ray, S. C., & Lemon, S. M. (2005). Hepatitis C. In G. L. Mandell, J. E. Bennett & R. Dolin (Eds.), Principles and practice of infectious diseases (6th ed.). Philadelphia: Elsevier Churchill Livingstone. Google Scholar
  27. Vento, S., Garofano, T., Rensini, C., Cainelli, F., Casali, F., Ghironzi, G., Ferraro, T., & Concia, E. (1998). Fulminant hepatitis associated with hepatitis A virus superinfection in patients with chronic hepatitis C. N. Engl. J. Med., 338, 286–290. CrossRefGoogle Scholar

Copyright information

© Society for Mathematical Biology 2012

Authors and Affiliations

  • Marcos Amaku
    • 1
  • Francisco Antonio Bezerra Coutinho
    • 2
    • 3
  • Eleazar Chaib
    • 2
    • 3
  • Eduardo Massad
    • 2
    • 3
    • 4
  1. 1.School of Veterinary MedicineUniversity of São PauloSão PauloBrazil
  2. 2.School of MedicineUniversity of São PauloSão PauloBrazil
  3. 3.LIM 01-HCFMUSPSão PauloBrazil
  4. 4.London School of Hygiene and Tropical MedicineLondonUK

Personalised recommendations