Bulletin of Mathematical Biology

, Volume 75, Issue 1, pp 49–81 | Cite as

A Model for Fluid Drainage by the Lymphatic System

  • Charles Heppell
  • Giles Richardson
  • Tiina Roose
Original Article


This study investigates the fluid flow through tissues where lymphatic drainage occurs. Lymphatic drainage requires the use of two valve systems, primary and secondary. Primary valves are located in the initial lymphatics. Overlapping endothelial cells around the circumferential lining of lymphatic capillaries are presumed to act as a unidirectional valve system. Secondary valves are located in the lumen of the collecting lymphatics and act as another unidirectional valve system; these are well studied in contrast to primary valves. We propose a model for the drainage of fluid by the lymphatic system that includes the primary valve system. The analysis in this work incorporates the mechanics of the primary lymphatic valves as well as the fluid flow through the interstitium and that through the walls of the blood capillaries. The model predicts a piecewise linear relation between the drainage flux and the pressure difference between the blood and lymphatic capillaries. The model describes a permeable membrane around a blood capillary, an elastic primary lymphatic valve and the interstitium lying between the two.


Mechanics Fluid flow Lymphatic system Primary lymphatic valves Euler–Bernoulli’s beam equation Darcy’s law Schwarz Christoffel mapping 


  1. Butler, S. L., Kohles, S. S., Thielke, R. J., Chen, C., & Vanderby, R. Jr. (1987). Interstitial fluid flow in tendons or ligaments: a porous medium finite element simulation. J. Vasc. Res., 35, 742–746. Google Scholar
  2. Dixon, J. B., Greiner, S. T., Goshev, A. A., Cote, G. L., Moore, J. E. Jr, & Zawieja, D. C. (2006). Lymph flow, shear stress, and lymphocyte velocity in rat mesenteric prenodal lymphatics. Microcirculation, 13, 597–610. CrossRefGoogle Scholar
  3. Driscoll, T. A., & Trefethen, L. N. (2002). Schwarz-Christoffel Mapping (1st ed.). Cambridge: Cambridge University Press. zbMATHCrossRefGoogle Scholar
  4. Galie, P., & Spilker, R. L. (2009). A two-dimensional computational model of lymph transport across primary lymphatic valves. J. Biomech. Eng., 131, 1297–1307. CrossRefGoogle Scholar
  5. Howell, P., Kozyreff, G., & Ockendon, J. (2009). Applied Solid Mechanics (1st ed.). Cambridge: Cambridge University Press. zbMATHGoogle Scholar
  6. Ikomi, F., Hunt, J., Hanna, G., & Schmid-Schönbein, G. W. (1996). Interstitial fluid, plasma protein, colloid, and leukocyte uptake into initial lymphatics. J. Appl. Physiol., 81, 2060–2067. Google Scholar
  7. Leak, L. V. (1970). Electron microscopic observations on lymphatic capillaries and the structural components of the connective tissue-lymph interface. Microvasc. Res., 2, 361–391. CrossRefGoogle Scholar
  8. Leak, L. V. (1971). Studies on the permeability of lymphatic capillaries. J. Cell Biol., 50, 300–323. CrossRefGoogle Scholar
  9. Leak, L. V. (1976). The structure of lymphatic capillaries in lymph formation. In Federation proceedings (Vol. 35, pp. 1863–1871). Google Scholar
  10. Levick, J. R. (1987). Flow through interstitium and other fibrous matrices. J. Exp. Psychol., 72, 409–439. Google Scholar
  11. Macdonald, A. J., Arkill, K. P., Tabor, G. R., McHale, N. G., & Winlove, C. P. (2008). Modeling flow in collecting lymphatic vessels: one-dimensional flow through a series of contractile elements. Am. J. Physiol., Heart Circ. Physiol., 295, 305–313. CrossRefGoogle Scholar
  12. Mazzoni, M. C., Skalak, T. C., & Schmid-Schönbein, G. W. (1997). Structure of lymphatic valves in the spinotrapezius muscle of the rat. In Medical and biological engineering and computing (Vol. 24, pp. 304–312). Google Scholar
  13. Mendoza, E., & Schmid-Schönbein, G. W. (2003). A model for mechanics of primary lymphatic valves. J. Biomech. Eng., 125, 407–414. CrossRefGoogle Scholar
  14. Schmid-Schönbein, G. W. (1990). Microlymphatics and lymph flow. Phys. Rev. 70, 987–1028. Google Scholar
  15. Skobe, M., & Detmar, M. (2000). Structure, function, and molecular control of the skin lymphatic system. J. Invest. Dermatol., 5, 14–19. CrossRefGoogle Scholar
  16. Stacker, S. A., Achen, M. G., Jussila, L., Baldwin, M. E., & Alitalo, K. (2002). Lymphangiogensis and cancer metastasis. Nat. Rev. Cancer, 2, 573–583. CrossRefGoogle Scholar
  17. Swartz, M. A. (2001). The physiology of the lymphatic system. Adv. Drug Deliv. Rev., 50, 3–20. CrossRefGoogle Scholar
  18. Swartz, M. A., & Boardman, K. C. Jr. (2002). The role of interstitila stress in lymphatic function and lymphangiogenesis. Ann. N.Y. Acad. Sci., 979, 197–210. CrossRefGoogle Scholar
  19. Swartz, M. A., Kaipainen, A., Netti, P. A., Brekken, C., Boucher, Y., Grodzinsky, A. J., & Jain, R. K. (1999). Mechanics of interstitial-lymphatic fluid transport: theoretical foundation and experimental validation. J. Biomech., 32, 1297–1307. CrossRefGoogle Scholar
  20. Theret, D. P., Levesque, M. J., Sato, M., Nerem, R. M., & Wheeler, L. T. (1988). The applications of a homogeneous half-space model in the analysis of endothelail cell micropipette measurements. J. Biomech. Eng., 110, 190–199. CrossRefGoogle Scholar
  21. Titcombe, M. S., & Ward, M. J. (2000). An asymptotic study of oxygen transport from multiple capillaries to skeletal muscle tissue. J. Appl. Math., 60, 1767–1788. MathSciNetzbMATHGoogle Scholar

Copyright information

© Society for Mathematical Biology 2012

Authors and Affiliations

  • Charles Heppell
    • 1
  • Giles Richardson
    • 1
  • Tiina Roose
    • 2
  1. 1.School of MathematicsUniversity of SouthamptonSouthamptonUK
  2. 2.Bioengineering Sciences Research Group, Faculty of Engineering and EnvironmentUniversity of SouthamptonSouthamptonUK

Personalised recommendations