Bulletin of Mathematical Biology

, Volume 74, Issue 11, pp 2622–2649 | Cite as

Evolution of Complex Density-Dependent Dispersal Strategies

Original Article

Abstract

The question of how dispersal behavior is adaptive and how it responds to changes in selection pressure is more relevant than ever, as anthropogenic habitat alteration and climate change accelerate around the world. In metapopulation models where local populations are large, and thus local population size is measured in densities, density-dependent dispersal is expected to evolve to a single-threshold strategy, in which individuals stay in patches with local population density smaller than a threshold value and move immediately away from patches with local population density larger than the threshold. Fragmentation tends to convert continuous populations into metapopulations and also to decrease local population sizes. Therefore we analyze a metapopulation model, where each patch can support only a relatively small local population and thus experience demographic stochasticity. We investigated the evolution of density-dependent dispersal, emigration and immigration, in two scenarios: adult and natal dispersal. We show that density-dependent emigration can also evolve to a nonmonotone, “triple-threshold” strategy. This interesting phenomenon results from an interplay between the direct and indirect benefits of dispersal and the costs of dispersal. We also found that, compared to juveniles, dispersing adults may benefit more from density-dependent vs. density-independent dispersal strategies.

Keywords

Demographic stochasticity Metapopulation 

References

  1. Baguette, M., & Van Dyck, H. (2007). Landscape connectivity and animal behavior: functional grain as a key determinant for dispersal. Landsc. Ecol., 22, 1117–1129. CrossRefGoogle Scholar
  2. Balkau, B. J., & Feldman, M. W. (1973). Selection for migration modification. Genetics, 74, 171–174. MathSciNetGoogle Scholar
  3. Bull, J. J., Thompson, C., Ng, D., & Moore, R. (1987). A model for natural selection of genetic migration. Am. Nat., 129, 143–157. CrossRefGoogle Scholar
  4. Cadet, C., Ferrière, R., Metz, J. A. J., & van Baalen, M. (2003). The evolution of dispersal under demographic stochasticity. Am. Nat., 162, 427–441. CrossRefGoogle Scholar
  5. Chitty, D. (1967). The natural selection of self-regulatory behavior in animal populations. Proc. Ecol. Soc. Aust., 2, 51–78. Google Scholar
  6. Comins, H. N. (1985). Evolutionarily stable dispersal strategies for localized dispersal in two dimensions. J. Theor. Biol., 94, 579–606. MathSciNetCrossRefGoogle Scholar
  7. Comins, H. N., Hamilton, W. D., & May, R. M. (1980). Evolutionarily stable dispersal strategies. J. Theor. Biol., 82, 205–230. MathSciNetCrossRefGoogle Scholar
  8. Dieckmann, U., & Law, R. (1996). The dynamical theory of coevolution: a derivation from stochastic ecological processes. J. Math. Biol., 34, 579–612. MathSciNetMATHCrossRefGoogle Scholar
  9. Dieckmann, U., Heino, M., & Parvinen, K. (2006). The adaptive dynamics of function-valued traits. J. Theor. Biol., 241, 370–389. MathSciNetCrossRefGoogle Scholar
  10. Dobson, F. S., & Jones, W. T. (1985). Multiple causes of dispersal. Am. Nat., 126, 855–858. CrossRefGoogle Scholar
  11. Doebeli, M., & Ruxton, G. D. (1997). Evolution of dispersal rates in metapopulation models: branching and cyclic dynamics in phenotype space. Evolution, 51, 1730–1741. CrossRefGoogle Scholar
  12. Durinx, M., Metz, J. A. J., & Meszéna, G. (2008). Adaptive dynamics for physiologically structured population models. J. Math. Biol., 56, 673–742. MathSciNetMATHCrossRefGoogle Scholar
  13. Errington, P. L. (1946). Predation and vertebrate populations. Q. Rev. Biol., 21, 144–177. CrossRefGoogle Scholar
  14. Gandon, S., & Michalakis, Y. (2001). Multiple causes of the evolution of dispersal. In J. Clobert, E. Danchin, A. A. Dhondt, & J. D. Nichols (Eds.), Dispersal (pp. 155–167). London: Oxford University Press. Google Scholar
  15. Geritz, S. A. H., Metz, J. A. J., Kisdi, É., & Meszéna, G. (1997). Dynamics of adaptation and evolutionary branching. Phys. Rev. Lett., 78, 2024–2027. CrossRefGoogle Scholar
  16. Geritz, S. A. H., Kisdi, É., Meszéna, G., & Metz, J. A. J. (1998). Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree. Evol. Ecol., 12, 35–57. CrossRefGoogle Scholar
  17. Geritz, S., Gyllenberg, M., & Ondráček, P. (2009). Evolution of density-dependent dispersal in a structured metapopulation. Math. Biosci., 219, 142–148. MathSciNetMATHCrossRefGoogle Scholar
  18. Greenwood, P. J., Harvey, P. H., & Perrins, C. M. (1978). Inbreeding and dispersal in great tit. Nature, 271, 52–54. CrossRefGoogle Scholar
  19. Gyllenberg, M., & Metz, J. A. J. (2001). On fitness in structured metapopulations. J. Math. Biol., 43, 545–560. MathSciNetMATHCrossRefGoogle Scholar
  20. Gyllenberg, M., Parvinen, K., & Dieckmann, U. (2002). Evolutionary suicide and evolution of dispersal in structured metapopulations. J. Math. Biol., 45, 79–105. MathSciNetMATHCrossRefGoogle Scholar
  21. Gyllenberg, M., Kisdi, E., & Utz, M. (2008). Evolution of condition-dependent dispersal under kin competition. J. Math. Biol., 57(2), 285–307. MathSciNetMATHCrossRefGoogle Scholar
  22. Gyllenberg, M., Kisdi, É., & Utz, M. (2011a). Body condition dependent dispersal in a heterogeneous environment. Theor. Popul. Biol., 79, 139–154. CrossRefGoogle Scholar
  23. Gyllenberg, M., Kisdi, É., & Utz, M. (2011b). Variability within families and the evolution of body condition dependent dispersal. J. Biol. Dyn., 5, 191–211. MathSciNetCrossRefGoogle Scholar
  24. Hamilton, W. D. (1964a). The genetical evolution of social behaviour. I. J. Theor. Biol., 7, 1–16. CrossRefGoogle Scholar
  25. Hamilton, W. D. (1964b). The genetical evolution of social behaviour. II. J. Theor. Biol., 7, 17–52. CrossRefGoogle Scholar
  26. Hamilton, W. D., & May, R. M. (1977). Dispersal in stable habitats. Nature, 269, 578–581. CrossRefGoogle Scholar
  27. Hanski, I. (2005). The shrinking world: ecological consequences of habitat loss. Oldendorf/Luhe: International Ecology Institute. Google Scholar
  28. Hanski, I., & Mononen, T. (2011). Eco-evolutionary dynamics of dispersal in spatially heterogeneous environments. Ecol. Lett., 14, 1025–1034. CrossRefGoogle Scholar
  29. Hastings, A. (1983). Can spatial variation alone lead to selection for dispersal? Theor. Popul. Biol., 24, 244–251. MathSciNetMATHCrossRefGoogle Scholar
  30. Hepburn, H. R. (2006). Absconding, migration and swarming in honeybees: an ecological and evolutionary perspective. In V. E. Kipyatkov (Ed.), Life cycles in social insects: behaviour, ecology and evolution (pp. 121–135). St. Petersburg: St. Petersburg University Press. Google Scholar
  31. Holt, R. D. (1985). Population dynamics in two-patch environments: some anomalous consequences of an optimal habitat distribution. Theor. Popul. Biol., 28, 181–208. MathSciNetMATHCrossRefGoogle Scholar
  32. Holt, R. D., & McPeek, M. (1996). Chaotic population dynamics favors the evolution of dispersal. Am. Nat., 148, 709–718. CrossRefGoogle Scholar
  33. Kisdi, É. (2002). Dispersal: risk spreading versus local adaptation. Am. Nat., 159, 579–596. CrossRefGoogle Scholar
  34. Kisdi, É. (2004). Conditional dispersal under kin competition: extension of the Hamilton–May model brood size-dependent dispersal. Theor. Popul. Biol., 66, 369–380. MATHCrossRefGoogle Scholar
  35. Korona, R. (1991). Genetic-basis of behavioral strategies—dispersal of female flour beetles, Tribolium confusum, in a laboratory system. Oikos, 62(3), 265–270. CrossRefGoogle Scholar
  36. Krebs, C. J., Wingate, I., Leduc, J., Redfield, J., Taitt, M., & Hilborn, R. (1976). Microtus population biology—dispersal in fluctuating populations of Microtus townsendii. Can. J. Zool., 54, 79–95. CrossRefGoogle Scholar
  37. Kuno, E. (1981). Dispersal and the persistence of populations in unstable habitats: a theoretical note. Oecologia, 49, 123–126. CrossRefGoogle Scholar
  38. Lack, D. (1966). Population studies of birds. Oxford: Oxford University Press. Google Scholar
  39. Lambin, X., Aars, J., & Piertney, S. B. (2001). Dispersal, intraspecific competition, kin competition and kin facilitation: a review of the empirical evidence. In J. Clobert, E. Danchin, A. A. Dhondt, & J. D. Nichols (Eds.), Dispersal (pp. 110–122). London: Oxford University Press. Google Scholar
  40. Lawson-Handley, L. J., & Perrin, N. (2007). Advances in our understanding of mammalian sex-biased dispersal. Mol. Ecol., 16, 1559–1578. CrossRefGoogle Scholar
  41. Le Galliard, J.-F., Ferriére, R., & Dieckmann, U. (2005). Adaptive evolution of social traits: origin, trajectories and correlations of altruism and mobility. Am. Nat., 165, 206–224. CrossRefGoogle Scholar
  42. Matthysen, E. (2005). Density-dependent dispersal in birds and mammals. Ecography, 28, 403–416. CrossRefGoogle Scholar
  43. Mayr, E. (1963). Animal species and evolution. London: Oxford University Press. Google Scholar
  44. Metz, J. A. J., & Gyllenberg, M. (2001). How should we define fitness in structured metapopulation models? Including an application to the calculation of ES dispersal strategies. Proc. R. Soc. Lond. B, Biol. Sci., 268, 499–508. CrossRefGoogle Scholar
  45. Metz, J. A. J., Jong, T. J., & Klinkhamer, P. G. L. (1983). What are the advantages of dispersing: a paper by Kuno explained and extended. Oecologia, 57, 166–169. CrossRefGoogle Scholar
  46. Metz, J. A. J., Nisbet, R. M., & Geritz, S. A. H. (1992). How should we define “fitness” for general ecological scenarios? Trends Ecol. Evol., 7, 198–202. CrossRefGoogle Scholar
  47. Metz, J. A. J., Geritz, S. A. H., Meszéna, G., Jacobs, F. J. A., & van Heerwaarden, J. S. (1996). Adaptive dynamics, a geometrical study of the consequences of nearly faithful reproduction. In S. J. van Strien & S. M. Verduyn Lunel (Eds.), Stochastic and spatial structures of dynamical systems (pp. 183–231). Amsterdam: North-Holland. Google Scholar
  48. Moore, J., & Ali, R. (1982). Are dispersal and inbreeding avoidance related? Anim. Behav., 32, 94–112. CrossRefGoogle Scholar
  49. Motro, U. (1982a). Optimal rates of dispersal I. Haploid populations. Theor. Popul. Biol., 21, 394–411. MathSciNetMATHCrossRefGoogle Scholar
  50. Motro, U. (1982b). Optimal rates of dispersal II. Diploid populations. Theor. Popul. Biol., 21, 412–429. MathSciNetMATHCrossRefGoogle Scholar
  51. Motro, U. (1983). Optimal rates of dispersal III. Parent offspring conflict. Theor. Popul. Biol., 23, 159–168. MATHCrossRefGoogle Scholar
  52. Nagy, J. D. (1996). Evolutionarily attracting dispersal strategies in vertebrate metapopulations. Ph.D. thesis, Arizona State University, Tempe, AZ, USA. Google Scholar
  53. Nurmi, T., & Parvinen, K. (2011). Joint evolution of specialization and dispersal in structured metapopulations. J. Theor. Biol., 275, 78–92. CrossRefGoogle Scholar
  54. Ogden, J. C. (1970a). Artificial selection for dispersal in flour beetles (tenebrionidae: Tribolium). Ecology, 51, 130–133. CrossRefGoogle Scholar
  55. Ogden, J. C. (1970b). Aspects of dispersal in tribolium flour beetles. Physiol. Zool., 42, 124–131. Google Scholar
  56. Parvinen, K. (1999). Evolution of migration in a metapopulation. Bull. Math. Biol., 61, 531–550. CrossRefGoogle Scholar
  57. Parvinen, K. (2002). Evolutionary branching of dispersal strategies in structured metapopulations. J. Math. Biol., 45, 106–124. MathSciNetMATHCrossRefGoogle Scholar
  58. Parvinen, K. (2006). Evolution of dispersal in a structured metapopulation model in discrete time. Bull. Math. Biol., 68, 655–678. MathSciNetCrossRefGoogle Scholar
  59. Parvinen, K. (2011). Adaptive dynamics of altruistic cooperation in a metapopulation: evolutionary emergence of cooperators and defectors or evolutionary suicide? Bull. Math. Biol., 73, 2605–2626. MathSciNetCrossRefGoogle Scholar
  60. Parvinen, K., & Metz, J. A. J. (2008). A novel fitness proxy in structured locally finite metapopulations with diploid genetics, with an application to dispersal evolution. Theor. Popul. Biol., 73, 517–528. MATHCrossRefGoogle Scholar
  61. Parvinen, K., Dieckmann, U., Gyllenberg, M., & Metz, J. A. J. (2003). Evolution of dispersal in metapopulations with local density dependence and demographic stochasticity. J. Evol. Biol., 16, 143–153. CrossRefGoogle Scholar
  62. Parvinen, K., Dieckmann, U., & Heino, M. (2006). Function-valued adaptive dynamics and the calculus of variations. J. Math. Biol., 52, 1–26. MathSciNetMATHCrossRefGoogle Scholar
  63. Parvinen, K., Heino, M., & Dieckmann, U. (2012). Function-valued adaptive dynamics and optimal control theory. J. Math. Biol. doi:10.1007/s00285-012-0549-2. Google Scholar
  64. Peacock, M. M., & Smith, A. T. (1997). The effect of habitat fragmentation on dispersal patterns, mating behavior, and genetic variation in a pika (Ochotona princeps) metapopulation. Oecologia, 112, 524–533. CrossRefGoogle Scholar
  65. Perrin, N., & Goudet, J. (2001). Inbreeding, kinship, and the evolution of natal dispersal. In J. Clobert, E. Danchin, A. A. Dhondt, & J. D. Nichols (Eds.), Dispersal (pp. 123–142). London: Oxford University Press. Google Scholar
  66. Perrins, C. (2008). Survival of young swifts in relation to brood size. Nature, 201, 1147–1148. CrossRefGoogle Scholar
  67. Roff, D. (1977). Dispersal in dipterans—its costs and consequences. J. Anim. Ecol., 46, 443–456. CrossRefGoogle Scholar
  68. Roff, D. A., & Fairbairn, D. J. (2001). The genetic basis of dispersal and migration, and its consequences for the evolution of correlated traits. In J. Clobert, E. Danchin, A. A. Dhondt, & J. D. Nichols (Eds.), Dispersal (pp. 191–202). London: Oxford University Press. Google Scholar
  69. Ronce, O., & Olivieri, I. (2004). Life history evolution in metapopulations. In I. Hanski & O. E. Gaggiotti (Eds.), Ecology, genetics, and evolution of metapopulations (pp. 227–257). Amsterdam: Elsevier. CrossRefGoogle Scholar
  70. Ronce, O., Perret, F., & Olivieri, I. (2000a). Evolutionarily stable dispersal rates do not always increase with local extinction rates. Am. Nat., 155, 485–496. CrossRefGoogle Scholar
  71. Ronce, O., Perret, F., & Olivieri, I. (2000b). Landscape dynamics and evolution of colonizer syndromes: interactions between reproductive effort and dispersal in a metapopulation. Evol. Ecol., 14, 233–260. CrossRefGoogle Scholar
  72. Smith, A. T. (1974a). The distribution and dispersal of pikas: consequences of insular population structure. Ecology, 55, 1112–1119. CrossRefGoogle Scholar
  73. Smith, A. T. (1974b). The distribution and dispersal of pikas: influences of behaviour and climate. Ecology, 55, 1368–1376. CrossRefGoogle Scholar
  74. Smith, A. T. (1980). Temporal changes in insular populations of the pika (ochotona princeps). Ecology, 61, 8–13. CrossRefGoogle Scholar
  75. Teague, R. (1977). A model of migration modification. Theor. Popul. Biol., 12, 86–94. CrossRefGoogle Scholar
  76. Van Valen, L. (1971). Group selection and the evolution of dispersal. Evolution, 25, 591–598. CrossRefGoogle Scholar
  77. Williams, G. C. (1966). Adaptation and natural selection. Princeton: Princeton University Press. Google Scholar

Copyright information

© Society for Mathematical Biology 2012

Authors and Affiliations

  • Kalle Parvinen
    • 1
  • Anne Seppänen
    • 1
  • John D. Nagy
    • 2
    • 3
  1. 1.Department of Mathematics and StatisticsUniversity of TurkuTurkuFinland
  2. 2.Department of Life ScienceScottsdale Community CollegeScottsdaleUSA
  3. 3.School of Mathematical and Statistical SciencesArizona State UniversityTempeUSA

Personalised recommendations