# Evolution of Complex Density-Dependent Dispersal Strategies

## Abstract

The question of how dispersal behavior is adaptive and how it responds to changes in selection pressure is more relevant than ever, as anthropogenic habitat alteration and climate change accelerate around the world. In metapopulation models where local populations are large, and thus local population size is measured in densities, density-dependent dispersal is expected to evolve to a single-threshold strategy, in which individuals stay in patches with local population density smaller than a threshold value and move immediately away from patches with local population density larger than the threshold. Fragmentation tends to convert continuous populations into metapopulations and also to decrease local population sizes. Therefore we analyze a metapopulation model, where each patch can support only a relatively small local population and thus experience demographic stochasticity. We investigated the evolution of density-dependent dispersal, emigration and immigration, in two scenarios: adult and natal dispersal. We show that density-dependent emigration can also evolve to a nonmonotone, “triple-threshold” strategy. This interesting phenomenon results from an interplay between the direct and indirect benefits of dispersal and the costs of dispersal. We also found that, compared to juveniles, dispersing adults may benefit more from density-dependent vs. density-independent dispersal strategies.

### Keywords

Demographic stochasticity Metapopulation## Notes

### Acknowledgements

Authors wish to thank two anonymous reviewers for valuable remarks to improve this manuscript. This study was funded by the Academy of Finland, project number 128323 to K.P.

### References

- Baguette, M., & Van Dyck, H. (2007). Landscape connectivity and animal behavior: functional grain as a key determinant for dispersal.
*Landsc. Ecol.*,*22*, 1117–1129. CrossRefGoogle Scholar - Balkau, B. J., & Feldman, M. W. (1973). Selection for migration modification.
*Genetics*,*74*, 171–174. MathSciNetGoogle Scholar - Bull, J. J., Thompson, C., Ng, D., & Moore, R. (1987). A model for natural selection of genetic migration.
*Am. Nat.*,*129*, 143–157. CrossRefGoogle Scholar - Cadet, C., Ferrière, R., Metz, J. A. J., & van Baalen, M. (2003). The evolution of dispersal under demographic stochasticity.
*Am. Nat.*,*162*, 427–441. CrossRefGoogle Scholar - Chitty, D. (1967). The natural selection of self-regulatory behavior in animal populations.
*Proc. Ecol. Soc. Aust.*,*2*, 51–78. Google Scholar - Comins, H. N. (1985). Evolutionarily stable dispersal strategies for localized dispersal in two dimensions.
*J. Theor. Biol.*,*94*, 579–606. MathSciNetCrossRefGoogle Scholar - Comins, H. N., Hamilton, W. D., & May, R. M. (1980). Evolutionarily stable dispersal strategies.
*J. Theor. Biol.*,*82*, 205–230. MathSciNetCrossRefGoogle Scholar - Dieckmann, U., & Law, R. (1996). The dynamical theory of coevolution: a derivation from stochastic ecological processes.
*J. Math. Biol.*,*34*, 579–612. MathSciNetMATHCrossRefGoogle Scholar - Dieckmann, U., Heino, M., & Parvinen, K. (2006). The adaptive dynamics of function-valued traits.
*J. Theor. Biol.*,*241*, 370–389. MathSciNetCrossRefGoogle Scholar - Dobson, F. S., & Jones, W. T. (1985). Multiple causes of dispersal.
*Am. Nat.*,*126*, 855–858. CrossRefGoogle Scholar - Doebeli, M., & Ruxton, G. D. (1997). Evolution of dispersal rates in metapopulation models: branching and cyclic dynamics in phenotype space.
*Evolution*,*51*, 1730–1741. CrossRefGoogle Scholar - Durinx, M., Metz, J. A. J., & Meszéna, G. (2008). Adaptive dynamics for physiologically structured population models.
*J. Math. Biol.*,*56*, 673–742. MathSciNetMATHCrossRefGoogle Scholar - Errington, P. L. (1946). Predation and vertebrate populations.
*Q. Rev. Biol.*,*21*, 144–177. CrossRefGoogle Scholar - Gandon, S., & Michalakis, Y. (2001). Multiple causes of the evolution of dispersal. In J. Clobert, E. Danchin, A. A. Dhondt, & J. D. Nichols (Eds.),
*Dispersal*(pp. 155–167). London: Oxford University Press. Google Scholar - Geritz, S. A. H., Metz, J. A. J., Kisdi, É., & Meszéna, G. (1997). Dynamics of adaptation and evolutionary branching.
*Phys. Rev. Lett.*,*78*, 2024–2027. CrossRefGoogle Scholar - Geritz, S. A. H., Kisdi, É., Meszéna, G., & Metz, J. A. J. (1998). Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree.
*Evol. Ecol.*,*12*, 35–57. CrossRefGoogle Scholar - Geritz, S., Gyllenberg, M., & Ondráček, P. (2009). Evolution of density-dependent dispersal in a structured metapopulation.
*Math. Biosci.*,*219*, 142–148. MathSciNetMATHCrossRefGoogle Scholar - Greenwood, P. J., Harvey, P. H., & Perrins, C. M. (1978). Inbreeding and dispersal in great tit.
*Nature*,*271*, 52–54. CrossRefGoogle Scholar - Gyllenberg, M., & Metz, J. A. J. (2001). On fitness in structured metapopulations.
*J. Math. Biol.*,*43*, 545–560. MathSciNetMATHCrossRefGoogle Scholar - Gyllenberg, M., Parvinen, K., & Dieckmann, U. (2002). Evolutionary suicide and evolution of dispersal in structured metapopulations.
*J. Math. Biol.*,*45*, 79–105. MathSciNetMATHCrossRefGoogle Scholar - Gyllenberg, M., Kisdi, E., & Utz, M. (2008). Evolution of condition-dependent dispersal under kin competition.
*J. Math. Biol.*,*57*(2), 285–307. MathSciNetMATHCrossRefGoogle Scholar - Gyllenberg, M., Kisdi, É., & Utz, M. (2011a). Body condition dependent dispersal in a heterogeneous environment.
*Theor. Popul. Biol.*,*79*, 139–154. CrossRefGoogle Scholar - Gyllenberg, M., Kisdi, É., & Utz, M. (2011b). Variability within families and the evolution of body condition dependent dispersal.
*J. Biol. Dyn.*,*5*, 191–211. MathSciNetCrossRefGoogle Scholar - Hamilton, W. D. (1964a). The genetical evolution of social behaviour. I.
*J. Theor. Biol.*,*7*, 1–16. CrossRefGoogle Scholar - Hamilton, W. D. (1964b). The genetical evolution of social behaviour. II.
*J. Theor. Biol.*,*7*, 17–52. CrossRefGoogle Scholar - Hamilton, W. D., & May, R. M. (1977). Dispersal in stable habitats.
*Nature*,*269*, 578–581. CrossRefGoogle Scholar - Hanski, I. (2005).
*The shrinking world: ecological consequences of habitat loss*. Oldendorf/Luhe: International Ecology Institute. Google Scholar - Hanski, I., & Mononen, T. (2011). Eco-evolutionary dynamics of dispersal in spatially heterogeneous environments.
*Ecol. Lett.*,*14*, 1025–1034. CrossRefGoogle Scholar - Hastings, A. (1983). Can spatial variation alone lead to selection for dispersal?
*Theor. Popul. Biol.*,*24*, 244–251. MathSciNetMATHCrossRefGoogle Scholar - Hepburn, H. R. (2006). Absconding, migration and swarming in honeybees: an ecological and evolutionary perspective. In V. E. Kipyatkov (Ed.),
*Life cycles in social insects: behaviour, ecology and evolution*(pp. 121–135). St. Petersburg: St. Petersburg University Press. Google Scholar - Holt, R. D. (1985). Population dynamics in two-patch environments: some anomalous consequences of an optimal habitat distribution.
*Theor. Popul. Biol.*,*28*, 181–208. MathSciNetMATHCrossRefGoogle Scholar - Holt, R. D., & McPeek, M. (1996). Chaotic population dynamics favors the evolution of dispersal.
*Am. Nat.*,*148*, 709–718. CrossRefGoogle Scholar - Kisdi, É. (2002). Dispersal: risk spreading versus local adaptation.
*Am. Nat.*,*159*, 579–596. CrossRefGoogle Scholar - Kisdi, É. (2004). Conditional dispersal under kin competition: extension of the Hamilton–May model brood size-dependent dispersal.
*Theor. Popul. Biol.*,*66*, 369–380. MATHCrossRefGoogle Scholar - Korona, R. (1991). Genetic-basis of behavioral strategies—dispersal of female flour beetles,
*Tribolium confusum*, in a laboratory system.*Oikos*,*62(3)*, 265–270. CrossRefGoogle Scholar - Krebs, C. J., Wingate, I., Leduc, J., Redfield, J., Taitt, M., & Hilborn, R. (1976). Microtus population biology—dispersal in fluctuating populations of
*Microtus townsendii*.*Can. J. Zool.*,*54*, 79–95. CrossRefGoogle Scholar - Kuno, E. (1981). Dispersal and the persistence of populations in unstable habitats: a theoretical note.
*Oecologia*,*49*, 123–126. CrossRefGoogle Scholar - Lack, D. (1966).
*Population studies of birds*. Oxford: Oxford University Press. Google Scholar - Lambin, X., Aars, J., & Piertney, S. B. (2001). Dispersal, intraspecific competition, kin competition and kin facilitation: a review of the empirical evidence. In J. Clobert, E. Danchin, A. A. Dhondt, & J. D. Nichols (Eds.),
*Dispersal*(pp. 110–122). London: Oxford University Press. Google Scholar - Lawson-Handley, L. J., & Perrin, N. (2007). Advances in our understanding of mammalian sex-biased dispersal.
*Mol. Ecol.*,*16*, 1559–1578. CrossRefGoogle Scholar - Le Galliard, J.-F., Ferriére, R., & Dieckmann, U. (2005). Adaptive evolution of social traits: origin, trajectories and correlations of altruism and mobility.
*Am. Nat.*,*165*, 206–224. CrossRefGoogle Scholar - Matthysen, E. (2005). Density-dependent dispersal in birds and mammals.
*Ecography*,*28*, 403–416. CrossRefGoogle Scholar - Mayr, E. (1963).
*Animal species and evolution*. London: Oxford University Press. Google Scholar - Metz, J. A. J., & Gyllenberg, M. (2001). How should we define fitness in structured metapopulation models? Including an application to the calculation of ES dispersal strategies.
*Proc. R. Soc. Lond. B, Biol. Sci.*,*268*, 499–508. CrossRefGoogle Scholar - Metz, J. A. J., Jong, T. J., & Klinkhamer, P. G. L. (1983). What are the advantages of dispersing: a paper by Kuno explained and extended.
*Oecologia*,*57*, 166–169. CrossRefGoogle Scholar - Metz, J. A. J., Nisbet, R. M., & Geritz, S. A. H. (1992). How should we define “fitness” for general ecological scenarios?
*Trends Ecol. Evol.*,*7*, 198–202. CrossRefGoogle Scholar - Metz, J. A. J., Geritz, S. A. H., Meszéna, G., Jacobs, F. J. A., & van Heerwaarden, J. S. (1996). Adaptive dynamics, a geometrical study of the consequences of nearly faithful reproduction. In S. J. van Strien & S. M. Verduyn Lunel (Eds.),
*Stochastic and spatial structures of dynamical systems*(pp. 183–231). Amsterdam: North-Holland. Google Scholar - Moore, J., & Ali, R. (1982). Are dispersal and inbreeding avoidance related?
*Anim. Behav.*,*32*, 94–112. CrossRefGoogle Scholar - Motro, U. (1982a). Optimal rates of dispersal I. Haploid populations.
*Theor. Popul. Biol.*,*21*, 394–411. MathSciNetMATHCrossRefGoogle Scholar - Motro, U. (1982b). Optimal rates of dispersal II. Diploid populations.
*Theor. Popul. Biol.*,*21*, 412–429. MathSciNetMATHCrossRefGoogle Scholar - Motro, U. (1983). Optimal rates of dispersal III. Parent offspring conflict.
*Theor. Popul. Biol.*,*23*, 159–168. MATHCrossRefGoogle Scholar - Nagy, J. D. (1996).
*Evolutionarily attracting dispersal strategies in vertebrate metapopulations*. Ph.D. thesis, Arizona State University, Tempe, AZ, USA. Google Scholar - Nurmi, T., & Parvinen, K. (2011). Joint evolution of specialization and dispersal in structured metapopulations.
*J. Theor. Biol.*,*275*, 78–92. CrossRefGoogle Scholar - Ogden, J. C. (1970a). Artificial selection for dispersal in flour beetles (tenebrionidae:
*Tribolium*).*Ecology*,*51*, 130–133. CrossRefGoogle Scholar - Ogden, J. C. (1970b). Aspects of dispersal in tribolium flour beetles.
*Physiol. Zool.*,*42*, 124–131. Google Scholar - Parvinen, K. (1999). Evolution of migration in a metapopulation.
*Bull. Math. Biol.*,*61*, 531–550. CrossRefGoogle Scholar - Parvinen, K. (2002). Evolutionary branching of dispersal strategies in structured metapopulations.
*J. Math. Biol.*,*45*, 106–124. MathSciNetMATHCrossRefGoogle Scholar - Parvinen, K. (2006). Evolution of dispersal in a structured metapopulation model in discrete time.
*Bull. Math. Biol.*,*68*, 655–678. MathSciNetCrossRefGoogle Scholar - Parvinen, K. (2011). Adaptive dynamics of altruistic cooperation in a metapopulation: evolutionary emergence of cooperators and defectors or evolutionary suicide?
*Bull. Math. Biol.*,*73*, 2605–2626. MathSciNetCrossRefGoogle Scholar - Parvinen, K., & Metz, J. A. J. (2008). A novel fitness proxy in structured locally finite metapopulations with diploid genetics, with an application to dispersal evolution.
*Theor. Popul. Biol.*,*73*, 517–528. MATHCrossRefGoogle Scholar - Parvinen, K., Dieckmann, U., Gyllenberg, M., & Metz, J. A. J. (2003). Evolution of dispersal in metapopulations with local density dependence and demographic stochasticity.
*J. Evol. Biol.*,*16*, 143–153. CrossRefGoogle Scholar - Parvinen, K., Dieckmann, U., & Heino, M. (2006). Function-valued adaptive dynamics and the calculus of variations.
*J. Math. Biol.*,*52*, 1–26. MathSciNetMATHCrossRefGoogle Scholar - Parvinen, K., Heino, M., & Dieckmann, U. (2012). Function-valued adaptive dynamics and optimal control theory.
*J. Math. Biol.*doi: 10.1007/s00285-012-0549-2. Google Scholar - Peacock, M. M., & Smith, A. T. (1997). The effect of habitat fragmentation on dispersal patterns, mating behavior, and genetic variation in a pika (
*Ochotona princeps*) metapopulation.*Oecologia*,*112*, 524–533. CrossRefGoogle Scholar - Perrin, N., & Goudet, J. (2001). Inbreeding, kinship, and the evolution of natal dispersal. In J. Clobert, E. Danchin, A. A. Dhondt, & J. D. Nichols (Eds.),
*Dispersal*(pp. 123–142). London: Oxford University Press. Google Scholar - Perrins, C. (2008). Survival of young swifts in relation to brood size.
*Nature*,*201*, 1147–1148. CrossRefGoogle Scholar - Roff, D. (1977). Dispersal in dipterans—its costs and consequences.
*J. Anim. Ecol.*,*46*, 443–456. CrossRefGoogle Scholar - Roff, D. A., & Fairbairn, D. J. (2001). The genetic basis of dispersal and migration, and its consequences for the evolution of correlated traits. In J. Clobert, E. Danchin, A. A. Dhondt, & J. D. Nichols (Eds.),
*Dispersal*(pp. 191–202). London: Oxford University Press. Google Scholar - Ronce, O., & Olivieri, I. (2004). Life history evolution in metapopulations. In I. Hanski & O. E. Gaggiotti (Eds.),
*Ecology, genetics, and evolution of metapopulations*(pp. 227–257). Amsterdam: Elsevier. CrossRefGoogle Scholar - Ronce, O., Perret, F., & Olivieri, I. (2000a). Evolutionarily stable dispersal rates do not always increase with local extinction rates.
*Am. Nat.*,*155*, 485–496. CrossRefGoogle Scholar - Ronce, O., Perret, F., & Olivieri, I. (2000b). Landscape dynamics and evolution of colonizer syndromes: interactions between reproductive effort and dispersal in a metapopulation.
*Evol. Ecol.*,*14*, 233–260. CrossRefGoogle Scholar - Smith, A. T. (1974a). The distribution and dispersal of pikas: consequences of insular population structure.
*Ecology*,*55*, 1112–1119. CrossRefGoogle Scholar - Smith, A. T. (1974b). The distribution and dispersal of pikas: influences of behaviour and climate.
*Ecology*,*55*, 1368–1376. CrossRefGoogle Scholar - Smith, A. T. (1980). Temporal changes in insular populations of the pika (ochotona princeps).
*Ecology*,*61*, 8–13. CrossRefGoogle Scholar - Teague, R. (1977). A model of migration modification.
*Theor. Popul. Biol.*,*12*, 86–94. CrossRefGoogle Scholar - Van Valen, L. (1971). Group selection and the evolution of dispersal.
*Evolution*,*25*, 591–598. CrossRefGoogle Scholar - Williams, G. C. (1966).
*Adaptation and natural selection*. Princeton: Princeton University Press. Google Scholar