Advertisement

Bulletin of Mathematical Biology

, Volume 74, Issue 11, pp 2547–2569 | Cite as

Feeding Currents of the Upside Down Jellyfish in the Presence of Background Flow

  • Christina L. HamletEmail author
  • Laura A. Miller
Original Article

Abstract

The upside-down jellyfish (Cassiopea spp.) is an ideal organism for examining feeding and exchange currents generated by bell pulsations due to its relatively sessile nature. Previous experiments and numerical simulations have shown that the oral arms play an important role in directing new fluid into the bell from along the substrate. All of this work, however, has considered the jellyfish in the absence of background flow, but the natural environments of Cassiopea and other cnidarians are dynamic. Flow velocities and directions fluctuate on multiple time scales, and mechanisms of particle capture may be fundamentally different in moving fluids. In this paper, the immersed boundary method is used to simulate a simplified jellyfish in flow. The elaborate oral arm structure is modeled as a homogenous porous layer. The results show that the oral arms trap vortices as they form during contraction and expansion of the bell. For constant flow conditions, the vortices are directed gently across the oral arms where particle capture occurs. For variable direction flows, the secondary structures change the overall pattern of the flow around the bell and appear to stabilize regions of mixing around the secondary mouths.

Keywords

Jellyfish feeding Dynamic flow 

Supplementary material

(MOV 12.0 MB)

(MOV 11.8 MB)

(MOV 24.1 MB)

(MOV 31.3 MB)

References

  1. Arai, M. N. (1996). Functional biology of Scyphozoa (1st ed.). New York: Springer. CrossRefGoogle Scholar
  2. Bigelow, R. P. (1900). The anatomy and development of Cassiopea xamachana. Mem. Read Boston Soc. Nat. Hist., 5, 191–236. Google Scholar
  3. Brusca, R. C., & Brusca, G. J. (2003). Invertebrates (2nd ed.). Sunderland: Sinauer Associates. Google Scholar
  4. Colin, S. P., & Costello, J. H. (2003). In situ swimming and feeding behavior of eight co-occurring hydromedusae. Mar. Ecol. Prog. Ser., 253, 305–309. CrossRefGoogle Scholar
  5. Costello, J. H., & Colin, S. P. (2002). Prey resource use by coexistent hydromedusae from Friday Harbor, Washington. Limnol. Oceanogr., 47(4), 934–942. CrossRefGoogle Scholar
  6. Dabiri, J. O., Colin, S. P., & Katija, K. (2010). A wake-based correlate of swimming performance and foraging behavior in seven co-occurring jellyfish species. J. Exp. Biol., 213, 1217–1225. CrossRefGoogle Scholar
  7. Demont, M. E., & Gosline, J. M. (1988). Mechanics of jet propulsion in the hydromedusan jellyfish, Polyorchis pexicillatus: III. A natural resonating bell; the presence and importance of a resonant phenomenon in the locomotor structure. J. Exp. Biol., 134(1), 347–361. Google Scholar
  8. Dillon, R. H., Fauci, L. J., Omoto, C., & Yang, X. (2007). Fluid dynamic models of flagellar and ciliary beating. Ann. N.Y. Acad. Sci., 1101, 494–505. CrossRefGoogle Scholar
  9. Fogelson, A. L., & Guy, R. D. (2008). Immersed-boundary-type models of intravascular platelet aggregation. Comput. Methods Appl. Mech. Eng., 197(25–28), 2087–2104. MathSciNetzbMATHCrossRefGoogle Scholar
  10. Griffith, B. E., Luo, X., McQueen, D. M., & Peskin, C. S. (2009). Simulating the fluid dynamics of natural and prosthetic heart valves using the immersed boundary method. Int. J. Appl. Mech., 1, 137–177. CrossRefGoogle Scholar
  11. Hamlet, C. L., Santhanakrishnan, A., & Miller, L. A. (2011). A numerical study of the effects of bell pulsation dynamics and oral arms on the exchange currents generated by the upside-down jellyfish Cassiopea sp. J. Exp. Biol., 214(11), 1911–1921. CrossRefGoogle Scholar
  12. Hasselmann, K., Barnett, T. P., Bouws, E., Carlson, H., Cartwright, D. E., Enke, K., Ewing, J. A., Gienapp, H., Hasselmann, D. E., Kruseman, P., Meerburg, A., Müller, P., Olbers, D. J., Richter, K., Sell, W., & Walden, H. (1973). Measurements of wind-wave growth and swell decay during the joint North Sea wave project (jonswap). Dtsch. Hydrogr. Z., Ergänz.heft, A, 8(12), 95. Google Scholar
  13. Hyman, L. H. (1940). The invertebrates: Vol. 1. Protozoa through Ctenophora. New York: McGraw-Hill. Google Scholar
  14. Jantzen, C., Wild, C., Rasheed, M., El-Zibdah, M., & Richter, C. (2010). Enhanced pore-water nutrient fluxes by the upside-down jellyfish Cassiopea sp. in a Red Sea coral reef. Mar. Ecol. Prog. Ser., 411, 117–125. CrossRefGoogle Scholar
  15. Kim, Y., & Peskin, C. S. (2006). 2-D parachute simulation by the immersed boundary method. SIAM J. Sci. Comput., 28(6), 2294–2312. MathSciNetzbMATHCrossRefGoogle Scholar
  16. Kim, Y., Lai, M. C., & Peskin, C. S. (2010). Numerical simulations of two-dimensional foam by the immersed boundary method. J. Comput. Phys., 229(13), 5194–5207. MathSciNetzbMATHCrossRefGoogle Scholar
  17. Kobashi, D., & Mazda, Y. (2005). Tidal flow in riverine-type mangroves. Wetlands Ecol. Manag., 13, 615–619. CrossRefGoogle Scholar
  18. Moskowitz, L. (1964). Estimates of the power spectrums for fully developed seas for wind speeds of 20 to 40 knots. J. Geophys. Res., 69(24), 5161–5179. CrossRefGoogle Scholar
  19. Lipinski, D., & Mohseni, K. (2009). Flow structures and fluid transport for the hydromedusae Sarsia tubulosa and Aequora victoria. J. Exp. Biol., 212, 2436–2447. CrossRefGoogle Scholar
  20. Mazda, Y., Wolanski, E., King, B., Sase, A., Ohtsuka, D., & Magi, M. (1997). Drag force due to vegetation in mangrove swamps. Mangroves and Salt Marshes, 1, 193–199. CrossRefGoogle Scholar
  21. Miller, L. A., & Peskin, C. S. (2009). Flexible clap and fling in tiny insect flight. J. Exp. Biol., 212(19), 3076–3090. CrossRefGoogle Scholar
  22. Mittal, R., & Iaccarino, G. (2005). Immersed boundary methods. Annu. Rev. Fluid Mech., 37, 239–261. MathSciNetCrossRefGoogle Scholar
  23. Newren, E. P., Fogelson, A. L., Guy, R. D., & Kirby, R. M. (2007). Unconditionally stable discretizations of the immersed boundary equations. J. Comput. Phys., 222, 702–719. MathSciNetzbMATHCrossRefGoogle Scholar
  24. Niggl, W., & Wild, C. (2010). Spatial distribution of the upside-down jellyfish Cassiopea sp. Helgol. Mar. Res., 64, 281–287. CrossRefGoogle Scholar
  25. Peng, J., & Dabiri, J. O. (2009). Transport of inertial particles by Lagrangian coherent structures: application to predator-prey interaction in jellyfish feeding. J. Fluid Mech., 623, 75–84. zbMATHCrossRefGoogle Scholar
  26. Peskin, C. S. (2002). The immersed boundary method. Acta Numer., 11, 479–517. MR 2009378 (2004h:74029). MathSciNetzbMATHCrossRefGoogle Scholar
  27. Peskin, C. S., & McQueen, D. M. (1996). Fluid dynamics of the heart and its valves. In Case studies in mathematical modeling: ecology, physiology, and cell biology (2nd ed.). New York: Prentice-Hall. Google Scholar
  28. Peskin, C. S., & Printz, B. F. (1993). Improved volume conservation in the computation of flows with immersed elastic boundaries. J. Comput. Phys., 105, 33–46. MathSciNetzbMATHCrossRefGoogle Scholar
  29. Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. (1992). Numerical recipes in C: the art of scientific computing (2nd ed.). Cambridge: Cambridge University Press. Google Scholar
  30. Sahin, M., Mohseni, K., & Colin, S. P. (2009). The numerical comparison of flow patterns and propulsive performances for the hydromedusae Sarsia tubulosa and Aequorea victoria. J. Exp. Biol., 212(16), 2656–2667. CrossRefGoogle Scholar
  31. Santhanakrishnan, A., Nguyen, N., Gunderson, J., & Miller, L. A. (2009). Flow within models of the vertebrate embryonic heart. J. Theor. Biol., 259(3), 449–461. CrossRefGoogle Scholar
  32. Santhanakrisnan, A., Dollinger, M., Hamlet, C. L., & Miller, L. A. (2012, in press). Flow structure and transport characteristics of the feeding and exchange currents generated by upside-down jellyfish Cassiopea. J. Exp. Biol. Google Scholar
  33. Sterrer, W. (1986). Marine fauna and flora of Bermuda: A systematic guide to the identification of marine organisms. New York: Wiley. Google Scholar
  34. Stockie, J. M. (2009). Modelling and simulation of porous immersed boundaries. Comput. Struct., 87(11–12), 701–709. CrossRefGoogle Scholar
  35. Templeman, M. A., & Kingsford, M. J. (2010). Trace element accumulation in Cassiopea sp. (Scyphozoa) from urban marine environments in Australia. Mar. Environ. Res., 69(2), 63–72. CrossRefGoogle Scholar
  36. Teran, J. M., & Peskin, C. S. (2009). Tether force constraints in Stokes flow by the immersed boundary method on a periodic domain. SIAM J. Sci. Comput., 31(5), 3404–3416. MathSciNetzbMATHCrossRefGoogle Scholar
  37. Teran, J., Fauci, L., & Shelley, M. (2010). Viscoelastic fluid response can increase the speed and efficiency of a free swimmer. Phys. Rev. Lett., 104(3), 038101. CrossRefGoogle Scholar
  38. Verduin, J. J., & Backhaus, J. O. (2000). Dynamics of plant-flow interactions for the seagrass Amphibolis antarctica: field observations and model simulations. Estuar. Coast. Shelf Sci., 50, 185–204. CrossRefGoogle Scholar
  39. Welsh, D. T., Dunn, R. J. K., & Maeziane, T. (2009). Oxygen and nutrient dynamics of the upside down jellyfish (Cassiopea sp.) and its influence on benthic nutrient exchanges and primary production. Hydrobiologia, 635, 351–362. CrossRefGoogle Scholar
  40. West, E. J., Welsh, D. T., & Pitt, K. A. (2009). Influence of decomposing jellyfish on the sediment oxygen demand and nutrient dynamics. Hydrobiologia, 616, 151–160. CrossRefGoogle Scholar

Copyright information

© Society for Mathematical Biology 2012

Authors and Affiliations

  1. 1.North Carolina State UniversityRaleighUSA

Personalised recommendations