Advertisement

Bulletin of Mathematical Biology

, Volume 74, Issue 10, pp 2272–2314 | Cite as

A Hybrid Discrete-Continuum Mathematical Model of Pattern Prediction in the Developing Retinal Vasculature

  • S. R. McDougall
  • M. G. Watson
  • A. H. Devlin
  • C. A. Mitchell
  • M. A. J. Chaplain
Original Article

Abstract

Pathological angiogenesis has been extensively explored by the mathematical modelling community over the past few decades, specifically in the contexts of tumour-induced vascularisation and wound healing. However, there have been relatively few attempts to model angiogenesis associated with normal development, despite the availability of animal models with experimentally accessible and highly ordered vascular topologies: for example, growth and development of the vascular plexus layers in the murine retina. The current study aims to address this issue through the development of a hybrid discrete-continuum mathematical model of the developing retinal vasculature in neonatal mice that is closely coupled with an ongoing experimental programme. The model of the functional vasculature is informed by a range of morphological and molecular data obtained over a period of several days, from 6 days prior to birth to approximately 8 days after birth.

The spatio-temporal formation of the superficial retinal vascular plexus (RVP) in wild-type mice occurs in a well-defined sequence. Prior to birth, astrocytes migrate from the optic nerve over the surface of the inner retina in response to a chemotactic gradient of PDGF-A, formed at an earlier stage by migrating retinal ganglion cells (RGCs). Astrocytes express a variety of chemotactic and haptotactic proteins, including VEGF and fibronectin (respectively), which subsequently induce endothelial cell sprouting and modulate growth of the RVP. The developing RVP is not an inert structure; however, the vascular bed adapts and remodels in response to a wide variety of metabolic and biomolecular stimuli. The main focus of this investigation is to understand how these interacting cellular, molecular, and metabolic cues regulate RVP growth and formation.

In an earlier one-dimensional continuum model of astrocyte and endothelial migration, we showed that the measured frontal velocities of the two cell types could be accurately reproduced by means of a system of five coupled partial differential equations (Aubert et al. in Bull. Math. Biol. 73:2430–2451, 2011). However, this approach was unable to generate spatial information and structural detail for the entire retinal surface. Building upon this earlier work, a more realistic two-dimensional hybrid PDE-discrete model is derived here that tracks the migration of individual astrocytes and endothelial tip cells towards the outer retinal boundary. Blood perfusion is included throughout plexus development and the emergent retinal architectures adapt and remodel in response to various biological factors. The resulting in silico RVP structures are compared with whole-mounted retinal vasculatures at various stages of development, and the agreement is found to be excellent. Having successfully benchmarked the model against wild-type data, the effect of transgenic over-expression of various genes is predicted, based on the ocular-specific expression of VEGF-A during murine development. These results can be used to help inform future experimental investigations of signalling pathways in ocular conditions characterised by aberrant angiogenesis.

Keywords

Retinopathy Angiogenesis 

Notes

Acknowledgements

The authors gratefully acknowledge financial support from the BBSRC: Grant # BB/F002254/1 and BB/F002807/1.

References

  1. Alarcon, T., Byrne, H., & Maini, P. K. (2003). A cellular automaton model for tumour growth in inhomogeneous environment. J. Theor. Biol., 225(2), 257–274. MathSciNetCrossRefGoogle Scholar
  2. Alarcon, T., Owen, M. R., Byrne, H. M., & Maini, P. K. (2006). Multiscale modelling of tumour growth and therapy: the influence of vessel normalisation on chemotherapy. Comput. Math. Methods Med., 7(2–3), 85–119. MathSciNetzbMATHCrossRefGoogle Scholar
  3. Anderson, A. R. A. (2005). A hybrid mathematical model of solid tumour invasion: the importance of cell adhesion. IMA J. Math. Med. Biol., 22, 163–186. zbMATHCrossRefGoogle Scholar
  4. Anderson, A. R. A., & Chaplain, M. A. J. (1998). Continuous and discrete mathematical models of tumour-induced angiogenesis. Bull. Math. Biol., 60, 857–899. zbMATHCrossRefGoogle Scholar
  5. Anderson, A. R. A., Chaplain, M. A. J., Newman, E. L., Steele, R. J. C., & Thompson, A. M. (2000). Mathematical modelling of tumour invasion and metastasis. J. Theor. Med., 2, 129–154. zbMATHCrossRefGoogle Scholar
  6. Aubert, M., Chaplain, M. A. J., McDougall, S. R., Devlin, A., & Mitchell, C. A. (2011). A continuous mathematical model of the developing murine retinal vasculature. Bull. Math. Biol., 73, 2430–2451. MathSciNetCrossRefGoogle Scholar
  7. Baron, M. (2003). An overview of the notch signalling pathway. Semin. Cell Dev. Biol., 14, 113–119. CrossRefGoogle Scholar
  8. Bauer, A. L., Jackson, T. L., & Jiang, Y. (2007). A cell-based model exhibiting branching and anastomosis during tumor-induced angiogenesis. Biophys. J., 92, 3105–3121. CrossRefGoogle Scholar
  9. Bentley, K., Gerhardt, H., & Bates, P. A. (2008). Agent-based simulation of notch-mediated tip cell selection in angiogenic sprout initialisation. J. Theor. Biol., 250(1), 25–36. CrossRefGoogle Scholar
  10. Brooker, R., Hozumi, K., & Lewis, J. (2006). Notch ligands with contrasting functions: jagged1 and delta1 in the mouse inner ear. Development, 133, 1277–1286. CrossRefGoogle Scholar
  11. Byrne, H. M., & Chaplain, M. A. J. (1995). Mathematical models for tumour angiogenesis: numerical simulations and nonlinear wave solutions. Bull. Math. Biol., 57, 461–486. zbMATHGoogle Scholar
  12. Cai, Y., Shixiong, X., Wu, J., & Long, Q. (2011). Coupled modelling of tumour angiogenesis, tumour growth and blood perfusion. J. Theor. Biol., 279, 90–101. CrossRefGoogle Scholar
  13. Carmeliet, P., & Jain, R. K. (2011). Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases. Nat. Rev., Drug Discov., 10, 417–427. CrossRefGoogle Scholar
  14. Carr, R. T., & Wickham, L. L. (1991). Influence of vessel diameter on red cell distribution at microvascular bifurcations. Microvasc. Res., 41, 184–196. CrossRefGoogle Scholar
  15. Chaplain, M. A. J. (2000). Mathematical modelling of angiogenesis. J. Neurooncol., 50, 37–51. CrossRefGoogle Scholar
  16. Chaplain, M. A. J., & Stuart, A. M. (1993). A model mechanism for the chemotactic response of endothelial cells to tumour angiogenesis factor. IMA J. Math. Appl. Med. Biol., 10, 149–168. zbMATHCrossRefGoogle Scholar
  17. Chaplain, M. A. J., McDougall, S. R., & Anderson, A. R. A. (2006). Mathematical modeling of tumour-induced angiogenesis. Annu. Rev. Biomed. Eng., 8, 233–257. CrossRefGoogle Scholar
  18. Claxton, S., & Fruttiger, M. (2003). Role of arteries in oxygen induced vaso-obliteration. Exp. Eye Res., 77, 305–311. CrossRefGoogle Scholar
  19. Das, A., Lauffenburger, D., Asada, H., & Kamm, R. D. (2010). A hybrid continuum-discrete modelling approach to predict and control angiogenesis: analysis of combinatorial growth factor and matrix effects on vessel-sprouting morphology. Philos. Trans. R. Soc. A, 368, 2937–2960. MathSciNetzbMATHGoogle Scholar
  20. Davies, M. H., Stempel, A. J., Hubert, K. E., & Powers, M. R. (2010). Altered vascular expression of EphrinB2 and EphB4 in a model of oxygen-induced retinopathy. Dev. Dyn., 239, 1695–1707. CrossRefGoogle Scholar
  21. Dorrell, M. I., Aguilar, E., & Friedlander, M. (2002). Retinal vascular development is mediated by endothelial filopodia, a preexisting astrocytic template and specific R-cadherin adhesion. Investig. Ophthalmol. Vis. Sci., 43(11), 3500–3510. Google Scholar
  22. Dorrell, M. I., Aguilar, E., Jacobson, R., Trauger, S. A., Friedlander, J., Siuzdak, G., & Friedlander, M. (2010). Maintaining retinal astrocytes normalizes revascularization and prevents vascular pathology associated with oxygen-induced retinopathy. GLIA, 58, 43–54. CrossRefGoogle Scholar
  23. Enden, G., & Popel, A. S. (1994). A numerical study of plasma skimming in small vascular bifurcations. J. Biomech. Eng., 119, 79–88. CrossRefGoogle Scholar
  24. Erber, R., Eichelsbacher, U., Powajbo, V., Korn, T., Djonov, V., Lin, J., Hammes, H. P., Grobholz, R., Ullrich, A., & Vajkoczy, P. (2006). EphB4 controls blood vascular morphogenesis during postnatal angiogenesis. EMBO J., 25, 628–641. CrossRefGoogle Scholar
  25. Fenton, B. M., Carr, R. T., & Cokelet, G. R. (1985). Nonuniform red cell distribution in 20–100 micron bifurcations. Microvasc. Res., 29, 103–126. CrossRefGoogle Scholar
  26. Ferrara, N., Houck, K., Jakeman, L., & Leung, D. W. (1992). Molecular and biological properties of the vascular endothelial growth factor family of proteins. Endocr. Rev., 13, 18–32. Google Scholar
  27. Ferrara, N., Mass, R. D., Campa, C., & Kim, R. (2007). Targeting VEGF-A to treat cancer and age-related macular degeneration. Annu. Rev. Med., 58, 491–504. CrossRefGoogle Scholar
  28. Flegg, J. A., McElwain, D. L. S., Byrne, H. M., & Turner, I. W. (2009). A three species model to simulate application of hyperbaric oxygen therapy to chronic wounds. PLoS Comput. Biol., 5, e1000451. MathSciNetCrossRefGoogle Scholar
  29. Folkman, J. (1995). Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat. Med., 1(1), 27–31. CrossRefGoogle Scholar
  30. Fruttiger, M. (2002). Development of the mouse retinal vasculature: angiogenesis versus vasculogenesis. Investig. Ophthalmol. Vis. Sci., 43, 522–527. Google Scholar
  31. Fruttiger, M., Calver, A. R., Kruger, W. H., Mudhar, H. S., Michalovich, D., Takakura, N., Nishikawa, S., & Richardson, W. D. (1996). PDGF mediates a neuron-astrocyte interaction in the developing retina. Neuron, 17(6), 1117–1131. CrossRefGoogle Scholar
  32. Ganesan, P., He, S., & Xu, H. (2010). Analysis of retinal circulation using an image-based network model of retinal vasculature. Microvasc. Res., 80, 99–109. CrossRefGoogle Scholar
  33. Gariano, R. F. (2003). Cellular mechanisms in retinal vascular development. Prog. Retin. Eye Res., 22(3), 295–306. CrossRefGoogle Scholar
  34. Gerhardt, H. (2008). VEGF and endothelial guidance in angiogenic sprouting. Organogenesis, 4(4), 241–246. MathSciNetCrossRefGoogle Scholar
  35. Gerhardt, H., Golding, M., Fruttiger, M., Ruhrberg, C., Lundkvist, A., Abramsson, A., Jeltsch, M., Mitchell, C., Alitalo, K., Shima, D., & Betsholtz, C. (2003). VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J. Cell Biol., 161(6), 1163–1177. CrossRefGoogle Scholar
  36. He, S., Prasanna, G., & Yorio, T. (2007). Endothelin-1-mediated signaling in the expression of matrix metalloproteinases and tissue inhibitors of metalloproteinases in astrocytes. Investig. Ophthalmol. Vis. Sci., 48, 3737–3745. CrossRefGoogle Scholar
  37. Jackson, T., & Zheng, X. (2010). A cell-based model of endothelial cell migration, proliferation and maturation during corneal angiogenesis. Bull. Math. Biol., 72, 830–868. MathSciNetzbMATHCrossRefGoogle Scholar
  38. Karagiannis, E. D., & Popel, A. S. (2006). Distinct modes of collagen type I proteolysis by matrix metalloproteinase (MMP) 2 and membrane type I MMP during the migration of a tip endothelial cell: insights from a computational model. J. Theor. Biol., 238, 124–145. CrossRefGoogle Scholar
  39. Keyt, B. A., Berleau, L. T., Nguyen, H. V., Chen, H., Heinsohn, H., Vandlen, R., & Ferrara, N. (1996). The carboxyl-terminal domain (111-165) of vascular endothelial growth factor is critical for its mitogenic potency. J. Biol. Chem., 271, 7788–7795. CrossRefGoogle Scholar
  40. Klitzman, B., & Johnson, P. C. (1982). Capillary network geometry and red cell distribution in hamster cremaster muscle. Am. J. Physiol., 242, 211–219. Google Scholar
  41. Levick, J. R. (2000). An introduction to cardiovascular physiology (3rd ed.). London: Arnold. Google Scholar
  42. Levine, H. A., Pamuk, S., Sleeman, B. D., & Nielsen-Hamilton, M. (2001). Mathematical modeling of the capillary formation and development in tumor angiogenesis: penetration into the stroma. Bull. Math. Biol., 63(5), 801–863. CrossRefGoogle Scholar
  43. Liu, D., Wood, N. B., Witt, N., Hughes, A. D., Thom, S. A., & Xu, X. Y. (2009). Computational analysis of oxygen transport in the retinal arterial network. Curr. Eye Res., 34(11), 945–956. CrossRefGoogle Scholar
  44. Machado, M. J. C., Watson, M. G., Devlin, A. H., Chaplain, M. A. J., McDougall, S. R., & Mitchell, C. A. (2010). Dynamics of angiogenesis during wound healing: a coupled in vivo and in silico study. Microcirculation, 18, 183–197. CrossRefGoogle Scholar
  45. Macklin, P., McDougall, S., Anderson, A. R. A., Chaplain, M. A. J., Cristini, V., & Lowengrub, J. (2009). Multiscale modelling and nonlinear simulation of vascular tumour growth. J. Math. Biol., 58, 765–798. MathSciNetCrossRefGoogle Scholar
  46. Maggelakis, S. A., & Savakis, A. E. (1996). A mathematical model of growth factor induced capillary growth in the retina. Math. Comput. Model., 24, 33–41. MathSciNetzbMATHCrossRefGoogle Scholar
  47. Maggelakis, S. A., & Savakis, A. E. (1999). A mathematical model of retinal neovascularization. Math. Comput. Model., 29, 91–97. zbMATHCrossRefGoogle Scholar
  48. Mantzaris, N. V., Webb, S., & Othmer, H. G. (2004). Mathematical modeling of tumor-induced angiogenesis. J. Math. Biol., 49, 111–187. MathSciNetzbMATHCrossRefGoogle Scholar
  49. McDougall, S. R., Anderson, A. R. A., Chaplain, M. A. J., & Sherratt, J. A. (2002). Mathematical modelling of flow through vascular networks: implications for tumour-induced angiogenesis and chemotherapy strategies. Bull. Math. Biol., 64, 673–702. CrossRefGoogle Scholar
  50. McDougall, S. R., Anderson, A. R. A., & Chaplain, M. A. J. (2006). Mathematical modelling of dynamic adaptive tumour-induced angiogenesis: clinical implications and therapeutic targeting strategies. J. Theor. Biol., 241, 564–589. MathSciNetCrossRefGoogle Scholar
  51. Mitchell, A. R., & Griffiths, D. F. (1980). The finite difference method in partial differential equations. Chichester: Wiley. zbMATHGoogle Scholar
  52. Mitchell, C. A., Rutland, C. S., Walker, M., Nasir, M., Foss, A. J., Stewart, C., Gerhardt, H., Konerding, M. A., Risau, W., & Drexler, H. C. (2006). Unique vascular phenotypes following over-expression of individual VEGFA isoforms from the developing lens. Angiogenesis, 9(4), 209–224. CrossRefGoogle Scholar
  53. Mudhar, H. S., Pollock, R. A., Wang, C., Stiles, C. D., & Richardson, W. D. (1993). PDGF and its receptors in the developing rodent retina and optic nerve. Development, 118(2), 539–552. Google Scholar
  54. Ng, Y. S., Rohan, R., Sunday, M. E., Demello, D. E., & D’Amore, P. A. (2001). Differential expression of VEGF isoforms in mouse during development and in the adult. Dev. Dyn., 220, 112–121. CrossRefGoogle Scholar
  55. Olsen, L., Sherratt, J. A., Maini, P. K., & Arnold, F. (1997). A mathematical model for the capillary endothelial cell-extracellular matrix interactions in wound-healing angiogenesis. IMA J. Math. Appl. Med. Biol., 14, 261–281. zbMATHCrossRefGoogle Scholar
  56. Orme, M. E., & Chaplain, M. A. J. (1997). Two-dimensional models of tumour angiogenesis and anti-angiogenesis strategies. IMA J. Math. Appl. Med. Biol., 14, 189–205. zbMATHCrossRefGoogle Scholar
  57. Owen, M. R., Alarcon, T., & Maini, P. K. (2009a). Angiogenesis and vascular remodelling in normal and cancerous tissues. J. Math. Biol., 58, 689–721. MathSciNetCrossRefGoogle Scholar
  58. Owen, M. R., Alarcon, T., Maini, P. K., & Byrne, H. M. (2009b). Angiogenesis and vascular remodelling in normal and cancerous tissues. J. Math. Biol., 58, 689–721. MathSciNetCrossRefGoogle Scholar
  59. Park, J. E., Keller, G. A., & Ferrara, N. (1993). The vascular endothelial growth factor (VEGF) isoforms: differential deposition into the subepithelial extracellular matrix and bioactivity of extracellular matrix-bound VEGF. Mol. Biol. Cell, 4, 1317–1326. Google Scholar
  60. Peirce, S. M. (2008). Computational and mathematical modelling of angiogenesis. Microcirculation, 15(8), 739–751. CrossRefGoogle Scholar
  61. Perfahl, H., Byrne, H. M., Chen, T., Estrella, V., Lapin, A., Gatenby, R. A., Gillies, R. J., Lloyd, M. C., Maini, P. K., Reuss, M., & Owen, M. R. (2011). Multiscale modelling of vascular tumour growth in 3D: the roles of domain size and boundary conditions. PloS One, 6(4), e14790. CrossRefGoogle Scholar
  62. Pettet, G. J., Byrne, H. M., McElwain, D. L. S., & Norbury, J. (1996). A model of wound-healing angiogenesis in soft tissue. Math. Biosci., 136, 35–63. zbMATHCrossRefGoogle Scholar
  63. Plank, M. J., & Sleeman, B. D. (2004). Lattice and non-lattice models of tumour angiogenesis. Bull. Math. Biol., 66, 1785–1819. MathSciNetCrossRefGoogle Scholar
  64. Pons-Salort, M., van der Sanden, B., Juhem, A., Popov, A., & Stephanou, A. (2012). A computational framework to assess the efficacy of cytotoxic molecules and vascular disrupting agents against solid tumours. Math. Model. Nat. Phenom., 7, 49–77. MathSciNetzbMATHCrossRefGoogle Scholar
  65. Pries, A. R., Ley, K., Claassen, M., & Gaehtgens, P. (1989). Red cell distribution at microvascular bifurcations. Microvasc. Res., 38, 81–101. CrossRefGoogle Scholar
  66. Pries, A. R., Fritzsche, A., Ley, K., & Gaehtgens, P. (1992). Redistribution of red blood cell flow in microcirculatory networks by hemodilution. Circ. Res., 70, 1113–1121. CrossRefGoogle Scholar
  67. Pries, A. R., Secomb, T. W., Gessner, T., Sperandio, M. B., Gross, J. F., & Gaehtgens, P. (1994). Resistance to blood flow in microvessels in vivo. Circ. Res., 75, 904–915. CrossRefGoogle Scholar
  68. Pries, A. R., Secomb, T. W., & Gaehtgens, P. (1998). Structural adaptation and stability of microvascular networks: theory and simulations. Am. J. Physiol., 275, 349–360. Google Scholar
  69. Pries, A. R., Reglin, B., & Secomb, T. W. (2001). Structural adaptation of microvascular networks: functional roles of adaptive responses. Am. J. Physiol., Heart Circ. Physiol., 281, 1015–1025. Google Scholar
  70. Pries, A. R., Hopfner, M., le Noble, F., Dewhirst, M. W., & Secomb, T. W. (2010). The shunt problem: control of functional shunting in normal and tumour vasculature. Nat. Rev. Cancer, 10, 587–593. CrossRefGoogle Scholar
  71. Rutland, C. S., Mitchell, C. A., Nasir, M., Konerding, M. A., & Drexler, H. C. (2007). Microphthalmia, persistent hyperplastic hyaloid vasculature and lens anomalies following overexpression of VEGF-A188 from the alphaA-crystallin promoter. Mol. Vis., 13, 47–56. Google Scholar
  72. Sainson, R. C. A., & Harris, A. L. (2006). Hypoxia-regulated differentiation: let’s step it up a Notch. Trends Mol. Med., 12(4), 141–143. CrossRefGoogle Scholar
  73. Sainson, R., Aoto, J., Nakatsu, M. N., Holderfield, M., Conn, E., Koller, E., & Hughes, C. C. W. (2005). Cell-autonomous Notch signalling regulates endothelial cell branching and proliferation during vascular tubulogenesis. FASEB J., 19(8), 1027–1029. Google Scholar
  74. Schmid-Schoenbein, G. W., Skalak, R., Usami, S., & Chien, S. (1980). Cell distribution in capillary networks. Microvasc. Res., 19, 18–44. CrossRefGoogle Scholar
  75. Schugart, R. C., Friedman, A., Zhao, R., & Sen, C. K. (2008). Wound angiogenesis as a function of tissue oxygen tension: a mathematical model. Proc. Natl. Acad. Sci., 105, 2628–2633. CrossRefGoogle Scholar
  76. Scott, A., Powner, M. B., Gandhi, P., Clarkin, C., Gutmann, D. H., Johnson, R. S., Ferrara, N., & Fruttiger, M. (2010). Astrocyte-derived vascular endothelial growth factor stabilizes vessels in the developing retinal vasculature. PLoS One, 5, e11863. CrossRefGoogle Scholar
  77. Secomb, T. W., Alberding, J. P., Hsu, R., & Pries, A. R. (2007). Simulation of angiogenesis, remodeling and pruning in microvascular networks. FASEB J., 21, 897.10. Google Scholar
  78. Shima, D. T., Kuroki, M., Deutsch, U., Ng, Y. S., Adamis, A. P., & D’Amore, P. A. (1996). The mouse gene for vascular endothelial growth factor. Genomic structure, definition of the transcriptional unit, and characterization of transcriptional and post-transcriptional regulatory sequences. J. Biol. Chem., 271, 3877–3883. CrossRefGoogle Scholar
  79. Shirinifard, A., Gens, J. S., Zaiden, B. L., Poplawski, N. J., Swat, M., & Glazier, J. A. (2009). 3D multi-cell simulation of tumour growth and angiogenesis. PloS One, 4(10), e7190. CrossRefGoogle Scholar
  80. Stalmans, I., Ng, Y. S., Rohan, R., Fruttiger, M., Bouche, A., Yuce, A., Fujisawa, H., Hermans, B., Shani, M., Jansen, S., Hicklin, D., Anderson, D. J., Gardiner, T., Hammes, H. P., Moons, L., Dewerchin, M., Collen, D., Carmeliet, P., & D’Amore, P. A. (2002). Arteriolar and venular patterning in retinas of mice selectively expressing VEGF isoforms. J. Clin. Invest., 109, 327–336. Google Scholar
  81. Stephanou, A., McDougall, S. R., Anderson, A. R. A., & Chaplain, M. A. J. (2005). Mathematical modelling of flow in 2D and 3D vascular networks: applications to anti-angiogenic and chemotherapeutic drug strategies. Math. Comput. Model., 41, 1137–1156. MathSciNetzbMATHCrossRefGoogle Scholar
  82. Stephanou, A., McDougall, S. R., Anderson, A. R. A., & Chaplain, M. A. J. (2006). Mathematical modelling of the influence of blood rheological properties upon adaptative tumour-induced angiogenesis. Math. Comput. Model., 44, 96–123. MathSciNetzbMATHCrossRefGoogle Scholar
  83. Stokes, C. L., & Lauffenburger, D. A. (1991). Analysis of the roles of microvessel endothelial cell random motility and chemotaxis in angiogenesis. J. Theor. Biol. 152, 377–403. CrossRefGoogle Scholar
  84. Stone, J., Chan-Ling, T., Pe’er, J., Itin, A., Gnessin, H., & Keshet, E. (1996). Roles of vascular endothelial growth factor and astrocyte degeneration in the genesis of retinopathy of prematurity. Investig. Ophthalmol. Vis. Sci., 37, 290–299. Google Scholar
  85. Stout, A. U., & Stout, J. T. (2003). Retinopathy of prematurity. Pediatr. Clin. North Am., 50, 77–87. CrossRefGoogle Scholar
  86. Szczerba, D., & Szekely, G. (2005). Computational model of flow-tissue interactions in intussusceptive angiogenesis. J. Theor. Biol., 234, 87–97. MathSciNetCrossRefGoogle Scholar
  87. Szczerba, D., Kurz, H., & Szekely, G. (2009). A computational model of intussusceptive microvascular growth and remodelling. J. Theor. Biol., 261, 570–583. CrossRefGoogle Scholar
  88. Uemura, A., Kusuhara, S., Wiegand, S. J., Yu, R. T., & Nishikawa, S. (2006). Tlx acts as a proangiogenic switch by regulating extracellular assembly of fibronectin matrices in retinal astrocytes. J. Clin. Invest., 116(2), 369–377. CrossRefGoogle Scholar
  89. Weidemann, A., Krohne, T. U., Aguilar, E., Kurihara, T., Takeda, N., Dorrell, M. I., Simon, M. C., Haase, V. H., Friedlander, M., & Johnson, R. S., (2010). Astrocyte hypoxic response is essential for pathological but not developmental angiogenesis of the retina. GLIA, 58(10), 1177–1185. Google Scholar
  90. Welter, M., Bartha, K., & Rieger, H. (2008). Emergent vascular network inhomogeneities and resulting blood flow patterns in a growing tumor. J. Theor. Biol., 250, 257–280. CrossRefGoogle Scholar
  91. Welter, M., Bartha, K., & Rieger, H. (2009). Vascular remodelling of an arterio-venous blood vessel network during solid tumour growth. J. Theor. Biol., 259, 405–422. CrossRefGoogle Scholar
  92. West, H., Richardson, W. D., & Fruttiger, M. (2005). Stabilization of the retinal vascular network by reciprocal feedback between blood vessels and astrocytes. Development, 132(8), 1855–1862. CrossRefGoogle Scholar
  93. Williams, C. K., Li, J. L., Murga, M., Harris, A. L., & Tosato, G. (2006). Up-regulation of the Notch ligand delta-like 4 inhibits VEGF induced endothelial cell function. Blood, 107(3), 931–939. CrossRefGoogle Scholar
  94. Wu, J., Xu, S., Long, Q., Collins, M. W., König, C., Zhao, G., Jiang, Y., & Padhani, A. R. (2008). Coupled modeling of blood perfusion in intravascular, interstitial spaces in tumor microvasculature. J. Biomech., 41, 996–1004. CrossRefGoogle Scholar
  95. Wu, J., Long, Q., Xu, S., & Padhani, A. R. (2009). Study of tumor blood perfusion and its variation due to vascular normalization by anti-angiogenic therapy based on 3D angiogenic microvasculature. J. Biomech., 42, 712–721. CrossRefGoogle Scholar
  96. Xue, C., Friedman, A., & Sen, C. K. (2009). A mathematical model of ischemic cutaneous wounds. Proc. Natl. Acad. Sci., 106, 16782–16787. CrossRefGoogle Scholar
  97. Yana, I., Sagara, H., Takaki, S., Takatsu, K., Nakamura, K., Nakao, K., Katsuki, M., Taniguchi, S., Aoki, T., Sato, H., Weiss, S. J., & Seiki, M. (2007). Crosstalk between neovessels and mural cells directs the site-specific expression of MT1-MMP to endothelial tip cells. J. Cell Sci., 120, 1607–1614. CrossRefGoogle Scholar
  98. Yen, R. T., & Fung, Y. C. (1978). Effect of velocity distribution on red cell distribution in capillary blood vessels. Am. J. Physiol., 235, 251–257. Google Scholar
  99. Zhang, M., Cheng, X., & Chintala, S. K. (2004). Optic nerve ligation leads to astrocyte-associated matrix metalloproteinase-9 induction in the mouse retina. Neurosci. Lett., 356, 140–144. CrossRefGoogle Scholar
  100. Zheng, X., Wise, S. M., & Cristini, V. (2005). Nonlinear simulation of tumor necrosis, neo-vascularization and tissue invasion via an adaptive finite-element/level-set method. Bull. Math. Biol., 67, 211–259. MathSciNetCrossRefGoogle Scholar

Copyright information

© Society for Mathematical Biology 2012

Authors and Affiliations

  • S. R. McDougall
    • 1
  • M. G. Watson
    • 1
  • A. H. Devlin
    • 2
  • C. A. Mitchell
    • 2
  • M. A. J. Chaplain
    • 3
  1. 1.Institute of Petroleum EngineeringHeriot-Watt UniversityEdinburghUK
  2. 2.Biomedical Sciences Research InstituteUniversity of UlsterColeraineUK
  3. 3.Division of MathematicsUniversity of DundeeDundeeUK

Personalised recommendations