Bulletin of Mathematical Biology

, Volume 74, Issue 7, pp 1651–1672

Latently Infected Cell Activation: A Way to Reduce the Size of the HIV Reservoir?

  • Jonathan Forde
  • Joseph M. Volpe
  • Stanca M. Ciupe
Original Article

Abstract

While antiretroviral drugs can drive HIV to undetectably low levels in the blood, eradication is hindered by the persistence of long-lived, latently infected memory CD4 T cells. Immune activation therapy aims to eliminate this latent reservoir by reactivating these memory cells, exposing them to removal by the immune system and the cytotoxic effects of active infection. In this paper, we develop a mathematical model that investigates the use of immune activation strategies while limiting virus and latent class rebound. Our model considers infection of two memory classes, central and transitional CD4 T cells and the role that general immune activation therapy has on their elimination. Further, we incorporate ways to control viral rebound by blocking activated cell proliferation through anti proliferation therapy. Using the model, we provide insight into the control of latent infection and subsequently into the long term control of HIV infection.

Keywords

HIV Latent reservoir Immune activation therapy Mathematical model 

References

  1. Archin, N. M., & Margolis, D. M. (2006). Attacking latent HIV provirus: from mechanism to therapeutic strategies. Curr. Opin. HIV & AIDS, 1, 134–140. Google Scholar
  2. Archin, N. M., Eron, J. J., Palmer, S., Hartmann-Duff, A., Martinson, J. A., Wiegand, A., Bandarenko, N., Schmitz, J. L., Bosch, R. J., Landay, A. L., Coffin, J. M., & Margolis, D. M. (2008). Valproic acid without intensified antiviral therapy has limited impact on persistent HIV infection of resting CD4+ T cells. AIDS, 22, 1131–1135. CrossRefGoogle Scholar
  3. Blankson, J. N., Persaud, D., & Siliciano, R. F. (2002). The challenge of viral reservoirs in HIV-1 infection. Annu. Rev. Med., 53(1), 557–593. CrossRefGoogle Scholar
  4. Blas-Garcia, A., Esplugues, J. V., & Apostolova, N. (2011). Twenty years of HIV-1 non-nucleoside reverse transcriptase inhibitors: time to reevaluate their toxicity. Curr. Med. Chem., 18(14), 2186–2195. Google Scholar
  5. Burnett, J. C., Lim, K., Calafi, A., Rossi, J. J., Schaffer, D. V., & Arkin, A. P. (2010). Combinatorial latency reactivation for HIV-1 subtypes and variants. J. Virol., 84(12), 5958–5974. CrossRefGoogle Scholar
  6. Callaway, D. S., & Perelson, A. S. (2002). HIV-1 infection and low steady state viral loads. Bull. Math. Biol., 64(1), 29–64. CrossRefGoogle Scholar
  7. Chomont, N., El-Far, M., Ancuta, P., Trautmann, L., Procopio, F. A., Yassine-Diab, B., Boucher, G., Boulassel, M.-R., Ghattas, G., Brenchley, J. M., Schacker, T. W., Hill, B. J., Douek, D. C., Routy, J.-P., Haddad, E. K., & Sékaly, R.-P. (2009). HIV reservoir size and persistence are driven by T cell survival and homeostatic proliferation. Nat. Med., 15, 893–900. CrossRefGoogle Scholar
  8. Chomont, N., DaFonseca, S., Vandergeeten, C., Ancuta, P., & Sékaly, R.-P. (2011). Maintenance of CD4+ T-cell memory and HIV persistence: keeping memory, keeping HIV. Curr. Opin. HIV & AIDS, 6, 30–36. CrossRefGoogle Scholar
  9. Chun, T. W., Carruth, L., Finzi, D., Shen, X., DiGiuseppe, J. A., Taylor, H., Hermankova, M., Chadwick, K., Margolick, J., Quinn, T. C., Kuo, Y. H., Brookmeyer, R., Zeiger, M. A., Barditch-Crovo, P., & Siliciano, R. F. (1997a). Quantification of latent tissue reservoirs and total body viral load in HIV-1 infection. Nature, 387, 183–188. CrossRefGoogle Scholar
  10. Chun, T. W., Stuyver, L., Mizell, S. B., Ehler, L. A., Mican, J. A. M., Baseler, M., Lloyd, A. L., Nowak, M. A., & Fauci, A. S. (1997b). Presence of an inducible HIV-1 latent reservoir during highly active antiretroviral therapy. Proc. Natl. Acad. Sci. USA, 94(24), 13193–13197. CrossRefGoogle Scholar
  11. Chun, T. W., Engel, D., Berrey, M. M., Shea, T., Corey, L., & Fauci, A. S. (1998). Early establishment of a pool of latently infected, resting CD4+ T cells during primary HIV-1 infection. Proc. Natl. Acad. Sci. USA, 95(15), 8869–8873. CrossRefGoogle Scholar
  12. Chun, T. W., Engel, D., Mizell, S. B., Hallahan, C. W., Fischette, M., Park, S., Davey, R. T. Jr., Dybul, M., Kovacs, J. A., Metcalf, J. A., Mican, J. M., Berrey, M. M., Corey, L., Lane, H. C., & Fauci, A. S. (1999). Effect of interleukin-2 on the pool of latently infected, resting CD4+ T cells in HIV-1-infected patients receiving highly active anti-retroviral therapy. Nat. Med., 5(6), 651–655. CrossRefGoogle Scholar
  13. Chun, T. W., Justement, J. S., Moir, S., Hallahan, C. W., Maenza, J., Mullins, J. I., Collier, A. C., Corey, L., & Fauci, A. S. (2007). Decay of the HIV reservoir in patients receiving antiretroviral therapy for extended periods: implications for eradication of virus. J. Infect. Dis., 195, 1762–1764. CrossRefGoogle Scholar
  14. Contreras, X., Schweneker, M., Chen, C.-S., McCune, J. M., Deeks, S. G., Martin, J., & Peterlin, B. M. (2009). Suberoylanilide hydroxamic acid reactivates HIV from latently infected cells. J. Biol. Chem., 284, 6782–6789. CrossRefGoogle Scholar
  15. d’Arminio Monforte, A., Lepri, A., & Rezza, G. (2000). Insights into the reasons for discontinuation of the first highly active antiretroviral therapy (HAART) regimen in a cohort of antiretroviral naive patients. AIDS, 14, 499–507. CrossRefGoogle Scholar
  16. Davey, R. T., Chaitt, D. G., Piscitelli, S. C., Wells, M., Kovacs, J. A., Walker, R. E., Falloon, J., Polis, M. A., Metcalf, J. A., Masur, H., Fyfe, G., & Lane, H. C. (1997). Subcutaneous administration of interleukin-2 in human immunodeficiency virus type 1-infected persons. J. Infect. Dis., 175(4), 781–789. CrossRefGoogle Scholar
  17. Di Mascio, M., Dornadula, G., Zhang, H., Sullivan, J., Xu, Y., Kulkosky, J., Pomerantz, R. J., & Perelson, A. S. (2003). In a subset of subjects on highly active antiretroviral therapy, human immunodeficiency virus type 1 RNA in plasma decays from 50 to <5 copies per milliliter, with a half-life of 6 months. J. Virol., 77, 2271–2275. CrossRefGoogle Scholar
  18. Di Mascio, M., Percus, J. K., Percus, O. E., Markowitz, M., Ho, D. D., & Perelson, A. S. (2005). Duration of an intermittent episode of viremia. Bull. Math. Biol., 67, 885–900. MathSciNetCrossRefGoogle Scholar
  19. Dornadula, G., Zhang, H., VanUitert, B., Stern, J., Livornese, L., Ingerman, M. J., Witek, J., Kedanis, R. J., Natkin, J., DeSimone, J., & Pomerantz, R. J. (1999). Residual HIV-1 RNA in blood plasma of patients taking suppressive highly active antiretroviral therapy. JAMA J. Am. Med. Assoc., 282(17), 1627–1632. CrossRefGoogle Scholar
  20. Finzi, D., Hermankova, M., Pierson, T., Carruth, L. M., Buck, C., Chaisson, R. E., Quinn, T. C., Chadwick, K., Margolick, J., Brookmeyer, R., Gallant, J., Markowitz, M., Ho, D. D., Richman, D. D., & Siliciano, R. F. (1997). Identification of a reservoir for HIV-1 in patients on highly active antiretroviral therapy. Science, 278(5341), 1295–1300. CrossRefGoogle Scholar
  21. Finzi, D., Blankson, J., Siliciano, J. D., Margolick, J. B., Chadwick, K., Pierson, T., Smith, K., Lisziewicz, J., Lori, F., Flexner, C., Quinn, T. C., Chaisson, R. E., Rosenberg, E., Walker, B., Gange, S., Gallant, J., & Siliciano, R. F. (1999). Latent infection of CD4+ T cells provides a mechanism for life long persistence of HIV-1, even in patients on effective combination therapy. Nat. Med., 5, 512–517. CrossRefGoogle Scholar
  22. Fraser, C., Ferguson, N. M., Ghani, A. C., Prinsa, J. M., Langea, J. M. A., Goudsmitb, J., Anderson, R. M., & de Wolf, F. (2000). Reduction of the HIV-1-infected T-cell reservoir by immune activation treatment is dose-dependent and restricted by the potency of antiretroviral drugs. AIDS, 14, 659–669. CrossRefGoogle Scholar
  23. Freed, E. O., & Martin, M. A. (2007). HIVs and their replication. In D. M. Knipe & P. M. Howley (eds.), Field’s Virology, pp. 2107–2186. Wolters Kluwer Health/Lippincott Williams & Wilkins, Philadelphia Google Scholar
  24. Geeraert, L., Kraus, G., & Pomerantz, R. J. (2008). Hide-and-seek: The challenge of viral persistence in HIV-1 infection. Annu. Rev. Med., 59(1), 487–501. CrossRefGoogle Scholar
  25. Gunthard, H. F., Havlir, D. V., Fiscus, S., Zhang, Z.-Q., Eron, J., Mellors, J., Gulick, R., Frost, S. D. W., Brown, A. J. L., Schleif, W., Valentine, F., Jonas, L., Meibohm, A., Ignacio, C. C., Isaacs, R., Gamagami, R., Emini, E., Haase, A., Richman, D. D., & Wong, J. K. (2001). Residual human immunodeficiency virus (HIV) type 1 RNA and DNA in lymph nodes and HIV RNA in genital secretions and in cerebrospinal fluid after suppression of viremia for 2 years. J. Infect. Dis., 183(9), 1318–1327. CrossRefGoogle Scholar
  26. Harrigan, P. R., Whaley, M., & Montaner, J. S. (1999). Rate of HIV-1 RNA rebound upon stopping antiretroviral therapy. AIDS, 13, F59–F62. CrossRefGoogle Scholar
  27. Ho, D. D., Neumann, A. U., Perelson, A. S., Chen, W., Leonard, J. M., & Markowitz, M. (1995). Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature, 373, 123–126. CrossRefGoogle Scholar
  28. Hockett, R. D., Kilby, J. M., Derdeyn, C. A., Saag, M. S., Sillers, M., Squires, K., Chiz, S., Nowak, M. A., Shaw, G. M., & Bucy, R. P. (1999). Constant mean viral copy number per infected cell in tissues regardless of high, low, or undetectable plasma HIV RNA. J. Exp. Med., 17, 1545–1554. CrossRefGoogle Scholar
  29. Hunt, P. W., Brenchley, J., Sinclair, E., McCune, J. M., Roland, M., Shafer, K. P., Hsue, P., Emu, B., Krone, M., Lampiris, H., Douek, D., Martin, J. N., & Deeks, S. G. (2008). Relationship between T cell activation and CD4+ T cell count in HIV-seropositive individuals with undetectable plasma HIV RNA levels in the absence of therapy. J. Infect. Dis., 197(1), 126–133. CrossRefGoogle Scholar
  30. Jones, L. E., & Perelson, A. S. (2007). Transient viremia, plasma viral load, and reservoir replenishment in HIV-infected patients on antiretroviral therapy. J. Acquir. Immune Defic. Syndr., 45, 483–493. CrossRefGoogle Scholar
  31. Kaufmann, G. R., Bloch, M., Zaunders, J. J., Smith, D., & Cooper, D. A. (2000). Long-term immunological response in HIV-1-infected subjects receiving potent antiretroviral therapy. AIDS, 14(8), 959–969. CrossRefGoogle Scholar
  32. Kim, H., & Perelson, A. S. (2006). Viral and latent reservoir persistence in HIV-1 infected patients on therapy. PLoS Comput. Biol., 2, e135. CrossRefGoogle Scholar
  33. Kovochich, M., Marsden, M. D., & Zack, J. A. (2011). Activation of latent HIV using drug-loaded nanoparticles. PLoS ONE, 6, e18270. CrossRefGoogle Scholar
  34. Lehrman, G., Hogue, I. B., Palmer, S., Jennings, C., Spina, C. A., Wiegand, A., Landay, A. L., Coombs, R. W., Richman, D. D., Mellors, J. W., Coffin, J. M., Bosch, R. J., & Margolis, D. M. (2005). Depletion of latent HIV-1 infection in vivo: a proof-of-concept study. The Lancet, 366(9485), 549–555. CrossRefGoogle Scholar
  35. Lok, J. J., Bosch, R. J., Benson, C. A., Collier, A. C., Robbins, G. K., Shafer, R. W., Hughes, M. D., & ALLRT team (2010). Long-term increase in CD4+ T-cell counts during combination antiretroviral therapy for HIV-1 infection. AIDS, 24(12), 1867–1876. CrossRefGoogle Scholar
  36. Margolis, D. M. (2010). Mechanisms of HIV latency: an emerging picture of complexity. Curr. HIV/AIDS Rep., 7, 37–43. CrossRefGoogle Scholar
  37. Markowitz, M., Louie, M., Hurley, A., Sun, E., Di Mascio, M., Perelson, A. S., & Ho, D. D. (2003). A novel antiviral intervention results in more accurate assessment of human immunodeficiency virus type 1 replication dynamics and T-cell decay in vivo. J. Virol., 77, 5037–5038. CrossRefGoogle Scholar
  38. Mellberg, T., Gonzalez, V., Lindkvist, A., Eden, A., Sonnerborg, A., Sandberg, J., Svennerholm, B., & Gisslen, M. (2011). Rebound of residual plasma viremia after initial decrease following addition of intravenous immunoglobulin to effective antiretroviral treatment of HIV. AIDS Res. Ther., 8(1), 21. CrossRefGoogle Scholar
  39. Nettles, R. E., Kieffer, T. L., Kwon, P., Monie, D., Han, Y., Parsons, T., Cofrancesco, J. Jr., Gallant, J. E., Quinn, T. C., Jackson, B., Flexner, C., Carson, K., Ray, S., Persaud, D., & Siliciano, R. F. (2005). Intermittent HIV-1 viremia (blips) and drug resistance in patients receiving HAART. JAMA J. Am. Med. Assoc., 293(7), 817–829. CrossRefGoogle Scholar
  40. Palmer, S., Maldarelli, F., Wiegand, A., Bernstein, B., Hanna, G. J., Brun, S. C., Kempf, D. J., Mellors, J. W., Coffin, J. M., & King, M. S. (2008). Low-level viremia persists for at least 7 years in patients on suppressive antiretroviral therapy. Proc. Natl. Acad. Sci. USA, 105(10), 3879–3884. CrossRefGoogle Scholar
  41. Perelson, A. S., Essunger, P., Cao, Y., Vesanen, M., Hurley, A., Saksela, K., Markowitz, M., & Ho, D. D. (1997). Decay characteristics of HIV-1-infected compartments during combination therapy. Nature, 387, 188–191. CrossRefGoogle Scholar
  42. Ramratnam, B., Bonhoeffer, S., Binley, J., Hurley, A., Zhang, L., Mittler, J. E., Markowitz, M., Moore, J. P., Perelson, A. S., & Ho, D. D. (1999). Rapid production and clearance of HIV-1 and hepatitis C virus assessed by large volume plasma apheresis. Lancet, 354, 1782–1785. CrossRefGoogle Scholar
  43. Rong, L., & Perelson, A. S. (2009a). Modeling HIV persistence, the latent reservoir, and viral blips. J. Theor. Biol., 260(2), 308–331. CrossRefGoogle Scholar
  44. Rong, L., & Perelson, A. S. (2009b). Asymmetric division of activated latently infected cells may explain the decay kinetics of the HIV-1 latent reservoir and intermittent viral blips. Math. Biosci., 217(1), 77–87. Mathematical Models of Inflammation. MathSciNetMATHCrossRefGoogle Scholar
  45. Rong, L., & Perelson, A. S. (2009c). Modeling latently infected cell activation: Viral and latent reservoir persistence, and viral blips in HIV-infected patients on potent therapy. PLoS Comput. Biol., 5, e1000533. MathSciNetCrossRefGoogle Scholar
  46. Sachsenberg, N., Perelson, A. S., Yerly, S., Schockmel, G. A., Leduc, D., Hirschel, B., & Perrin, L. (1998). Turnover of CD4 and CD8 T lymphocytes in HIV-1 infection as measured by Ki-67 antigen. J. Exp. Med., 187, 1295–1303. CrossRefGoogle Scholar
  47. Sallusto, F., Geginat, J., & Lanzavecchia, A. (2004). Central memory and effector memory T cell subsets: Function, generation, and maintenance. Annu. Rev. Immunol., 22, 745–763. CrossRefGoogle Scholar
  48. Sedaghat, A. R., Siciliano, R. F., & Wilke, C. O. (2008). Low-level HIV-1 replication and the dynamics of the resting CD4+ T cell reservoir for HIV-1 in the setting of HAART. BMC Infect. Dis., 8, 1–14. CrossRefGoogle Scholar
  49. Shen, L., & Siliciano, R. F. (2008). Viral reservoirs, residual viremia, and the potential of highly active antiretroviral therapy to eradicate HIV infection. J. Allergy Clin. Immunol., 122, 22–28. CrossRefGoogle Scholar
  50. Siliciano, J. D., Kajdas, J., Finzi, D., Quinn, T. C., Chadwick, K., Margolick, J. B., Kovacs, C., Gange, S. J., & Siliciano, R. F. (2003). Long-term follow-up studies confirm the stability of the latent reservoir for HIV-1 in resting CD4+ T cells. Nat. Med., 9, 727–728. CrossRefGoogle Scholar
  51. Siliciano, J. D., Lai, J., Callender, M., Pitt, E., Zhang, H., Margolick, J. B., Gallant, J. E., Cofrancesco, J. Jr., Moore, R. D., Gange, S. J., & Siliciano, R. F. (2007). Stability of the latent reservoir for HIV-1 in patients receiving valproic acid. J. Infect. Dis., 195, 833–836. CrossRefGoogle Scholar
  52. Simon, V., & Ho, D. D. (2003). HIV-1 dynamics in vivo: implications for therapy. Nat. Rev., Microbiol., 1, 181–190. CrossRefGoogle Scholar
  53. Smith, R., & Aggarwala, B. (2009). Can the viral reservoir of latently infected CD4 T cells be eradicated with antiretroviral HIV drugs? J. Math. Biol., 59, 697–715. MathSciNetMATHCrossRefGoogle Scholar
  54. Stafford, M. A., Corey, L., Cao, Y., Daar, E. S., Ho, D. D., & Perelson, A. S. (2000). Modeling plasma virus concentration during primary HIV infection. J. Theor. Biol., 203, 285. CrossRefGoogle Scholar
  55. Suntharalingam, G., Perry, M. R., Ward, S., Brett, S. J., Castillo-Cortes, A., Brunner, M. D., & Panoskaltsis, N. (2006). Cytokine storm in a phase 1 trial of the anti-CD28 monoclonal antibody TGN1412. N. Engl. J. Med., 355, 1018–1028. CrossRefGoogle Scholar
  56. Wei, X., Ghosh, S. K., Taylor, M. E., Johnson, V. A., Emini, E. A., Deutsch, P., Lifson, J. D., Bonhoeffer, S., Nowak, M. A., Hahn, B. H., Saag, M. S., & Shaw, G. M. (1995). Viral dynamics in human immunodeficiency virus type 1 infection. Nature, 373, 117–122. CrossRefGoogle Scholar
  57. Wolschendorf, F., Duverger, A., Jones, J., Wagner, F. H., Huff, J., Benjamin, W. H., Saag, M. S., Niederweis, M., & Kutsch, O. (2010). Hit-and-run stimulation: a novel concept to reactivate latent HIV-1 infection without cytokine gene induction. J. Virol., 84(17), 8712–8720. CrossRefGoogle Scholar
  58. Yang, H. C., Shen, L., Siciliano, R. F., & Pomerantz, J. L. (2009). Isolation of a cellular factor that can reactivate latent HIV-1 without T cell activation. Proceedings of the National Academy of Science (USA) (pp. 6321–6325). Google Scholar
  59. Yates, A., Stark, J., Klein, N., Antia, R., & Callard, R. (2007). Understanding the slow depletion of memory CD4+ T cells in HIV infection. PLoS Med., 4, e177. CrossRefGoogle Scholar
  60. Zhang, L., Ramratnam, B., Tenner-Racz, K., He, Y., Vesanen, M., Lewin, S., Talal, A., Racz, P., Perelson, A. S., Korber, B. T., Markowitz, M., & Ho, D. D. (1999). Quantifying residual HIV-1 replication in patients receiving combination antiretroviral therapy. N. Engl. J. Med., 340, 1605–1613. CrossRefGoogle Scholar

Copyright information

© Society for Mathematical Biology 2012

Authors and Affiliations

  • Jonathan Forde
    • 1
  • Joseph M. Volpe
    • 2
  • Stanca M. Ciupe
    • 3
  1. 1.Department of Mathematics and Computer ScienceHobart and Williams Smith CollegesGenevaUSA
  2. 2.DurhamUSA
  3. 3.Department of MathematicsVirginia TechBlacksburgUSA

Personalised recommendations