Bulletin of Mathematical Biology

, Volume 74, Issue 4, pp 858–880 | Cite as

The Algebra of the General Markov Model on Phylogenetic Trees and Networks

  • J. G. Sumner
  • B. R. Holland
  • P. D. Jarvis
Original Article


It is known that the Kimura 3ST model of sequence evolution on phylogenetic trees can be extended quite naturally to arbitrary split systems. However, this extension relies heavily on mathematical peculiarities of the associated Hadamard transformation, and providing an analogous augmentation of the general Markov model has thus far been elusive. In this paper, we rectify this shortcoming by showing how to extend the general Markov model on trees to include incompatible edges; and even further to more general network models. This is achieved by exploring the algebra of the generators of the continuous-time Markov chain together with the “splitting” operator that generates the branching process on phylogenetic trees. For simplicity, we proceed by discussing the two state case and then show that our results are easily extended to more states with little complication. Intriguingly, upon restriction of the two state general Markov model to the parameter space of the binary symmetric model, our extension is indistinguishable from the Hadamard approach only on trees; as soon as any incompatible splits are introduced the two approaches give rise to differing probability distributions with disparate structure. Through exploration of a simple example, we give an argument that our extension to more general networks has desirable properties that the previous approaches do not share. In particular, our construction allows for convergent evolution of previously divergent lineages; a property that is of significant interest for biological applications.


Split system Cluster system Markov process Maximum likelihood 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bandelt, H.-J. (1994). Phylogenetic networks. In Verhandlungen des Naturwissenschaftlichen Vereins Hamburg: Vol. 34. Google Scholar
  2. Bandelt, H. J., & Dress, A. W. M. (1992). Split decomposition: a new and useful approach to phylogenetic analysis of distance data. Molecular Phylogenetics and Evolution, 1, 242–252. CrossRefGoogle Scholar
  3. Bashford, J. D., Jarvis, P. D., Sumner, J. G., & Steel, M. A. (2004). U(1)×U(1)×U(1) symmetry of the Kimura 3ST model and phylogenetic branching processes. Journal of Physics. A, Mathematical and General, 37, L1–L9. CrossRefGoogle Scholar
  4. Bryant, D. (2005a). Extending tree models to split networks. In: L. Pachter & B. Sturmfels (Eds.), Algebraic statistics and computational biology (pp. 297–368). Cambridge: Cambridge University Press. Google Scholar
  5. Bryant, D. (2005b). On the uniqueness of the selection criterion in Neighbor-Joining. Journal of Classification, 22, 3–15. MathSciNetzbMATHCrossRefGoogle Scholar
  6. Bryant, D. (2009). Hadamard phylogenetic methods and the n-taxon process. Bulletin of Mathematical Biology, 71, 297–309. CrossRefGoogle Scholar
  7. Bryant, D., & Moulton, V. (2004). Neighbor-Net: an agglomerative method for the construction of phylogenetic networks. Molecular Biology and Evolution, 21, 255–265. CrossRefGoogle Scholar
  8. Hendy, M. D., & Penny, D. (1989). A framework for the quantitative study of evolutionary trees. Systematic Zoology, 38, 297–309. CrossRefGoogle Scholar
  9. Holland, B., & Moulton, V. (2003). Consensus networks: a method for visualising incompatibilities in collections of trees. In: G. Benson & R. Page (Eds.), 3rd international workshop on algorithms in bioinformatics (WABI 2003) (pp. 165–176). Berlin: Springer. Google Scholar
  10. Holland, B. R., Jermiin, L. S., & Moulton, V. (2006). Improved consensus network techniques for genome-scale phylogeny. Molecular Biology and Evolution, 23, 848–855. CrossRefGoogle Scholar
  11. Huson, D. H., Rupp, R., & Scornavacca, C. (2011). Phylogenetic networks: concepts, algorithms and applications. Cambridge: Cambridge University Press. Google Scholar
  12. Jarvis, P. D., Bashford, J. D., & Sumner, J. G. (2005). Path integral formulation and Feynman rules for phylogenetic branching models. Journal of Physics. A, Mathematical and General, 38, 9621–9647. MathSciNetzbMATHCrossRefGoogle Scholar
  13. Jarvis, P. D., & Sumner, J. G. (2010). Markov invariants for phylogenetic rate matrices derived from embedded submodels. arXiv:1008.1121, to appear.
  14. Jermiin, L. S., Ho, S. Y. W., Ababneh, F., Robinson, J., & Larkum, A. W. D. (2004). The biasing effect of compositional heterogeneity on phylogenetic estimates may be underestimated. BMC Systems Biology, 53, 638–643. Google Scholar
  15. Jin, G., Nakhleh, L., Snir, S., & Tuller, T. (2006). Maximum likelihood of phylogenetic networks. Bioinformatics, 21, 2604–2611. CrossRefGoogle Scholar
  16. Johnson, J. E. (1985). Markov-type Lie groups in GL(n,ℝ). Journal of Mathematical Physics, 26, 252–257. MathSciNetzbMATHCrossRefGoogle Scholar
  17. Penny, D. (2005). Relativity for molecular clocks. Nature, 436, 183–184. CrossRefGoogle Scholar
  18. Procesi, C. (2007). Lie groups: an approach through invariants and representations. Berlin: Springer. zbMATHGoogle Scholar
  19. Semple, C., & Steel, M. (2003). Phylogenetics. Oxford: Oxford Press. zbMATHGoogle Scholar
  20. Strimmer, K., & Moulton, V. (2000). Likelihood analysis of phylogenetic networks using directed graphical models. Molecular Biology and Evolution, 17, 875–881. Google Scholar
  21. Sumner, J. G., Charleston, M. A., Jermiin, L. S., & Jarvis, P. D. (2008). Markov invariants, plethysms, and phylogenetics. Journal of Theoretical Biology, 253, 601–615. CrossRefGoogle Scholar
  22. Sumner, J. G., & Jarvis, P. D. (2005). Entanglement invariants and phylogenetic branching. Journal of Mathematical Biology, 51, 18–36. MathSciNetzbMATHCrossRefGoogle Scholar
  23. Von Haeseler, A., & Churchill, G. A. (1993). Network models for sequence evolution. Journal of Molecular Evolution, 37, 77–85. CrossRefGoogle Scholar

Copyright information

© Society for Mathematical Biology 2011

Authors and Affiliations

  1. 1.School of Mathematics and PhysicsUniversity of TasmaniaTasmaniaAustralia

Personalised recommendations