Bulletin of Mathematical Biology

, Volume 74, Issue 4, pp 803–833 | Cite as

A Nonlinear Stability Analysis of Vegetative Turing Pattern Formation for an Interaction–Diffusion Plant-Surface Water Model System in an Arid Flat Environment

Original Article

Abstract

The development of spontaneous stationary vegetative patterns in an arid flat environment is investigated by means of a weakly nonlinear diffusive instability analysis applied to the appropriate model system for this phenomenon. In particular, that process can be modeled by a partial differential interaction–diffusion equation system for the plant biomass density and the surface water content defined on an unbounded flat spatial domain. The main results of this analysis can be represented by closed-form plots in the rate of precipitation versus the specific rate of plant density loss parameter space. From these plots, regions corresponding to bare ground and vegetative patterns consisting of parallel stripes, labyrinth-like mazes, hexagonal arrays of gaps, irregular mosaics, and homogeneous distributions of vegetation, respectively, may be identified in this parameter space. Then those theoretical predictions are compared with both relevant observational evidence involving tiger and pearled bush patterns and existing numerical simulations of similar model systems as well as placed in the context of the results from some recent nonlinear vegetative pattern formation studies.

Keywords

Vegetative Turing patterns Nonlinear stability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boonkorkuea, N., Lenbury, Y., Alvarado, F. J., & Wollkind, D. J. (2010). Nonlinear stability analyses of vegetative pattern formation in an arid environment. Journal of Biological Dynamics, 4, 346–380. MathSciNetCrossRefGoogle Scholar
  2. Borckmans, P., Dewel, G., De Wit, A., & Walgaef, D. (1995). Turing bifurcation and pattern selection. In R. Kapral & K. Showalter (Eds.), Chemical waves and patterns (pp. 323–363). Dordrecht: Kluwer. CrossRefGoogle Scholar
  3. Clos-Arceduc, M. (1964). Estude sur photographies aériennes d’une formation végétale sahéleinne: la brousse tigrée. Bulletin de L’Institut Francais D’Afrique Noire. Serie A, 18, 677–684. Google Scholar
  4. Couteron, P., Mahamane, A., Ouedraogo, P., & Seghieri, J. (2000). Differences between banded thickets (tiger bush) at two sites in West Africa. Journal of Vegetation Science, 11, 321–328. CrossRefGoogle Scholar
  5. Dionne, B., Silber, M., & Skelton, A. C. (1997). Stability results for steady, spatially periodic planforms. Nonlinearity, 10, 321–358. MathSciNetMATHCrossRefGoogle Scholar
  6. Edelstein-Keshet, L. (1988). Mathematical models in biology. New York: Random House. MATHGoogle Scholar
  7. Golovin, A. A., Matkowski, B. J., & Volpert, V. A. (2008). Turing pattern formation in the Brusselator model with superdiffusion. SIAM Journal on Applied Mathematics, 69, 251–272. MathSciNetMATHCrossRefGoogle Scholar
  8. Graham, M. D., Kevrekidis, I. G., Asakura, K., Lauterbach, J., Krishner, K., Rotermund, H.-H., & Ertl, G. (1994). Effects of boundaries on pattern formation: Catalytic oxidation of CO on platinum. Science, 264, 80–82. CrossRefGoogle Scholar
  9. Judd, S. L., & Silber, M. (2000). Simple and superlattice Turing patterns in reaction–diffusion systems: bifurcation, bistability, and parameter collapse. Physica D, 136, 45–65. MathSciNetMATHCrossRefGoogle Scholar
  10. Kealy, B. J. (2011). A nonlinear stability analysis of vegetative Turing pattern formation for an interaction–diffusion plant-surface water model system in an arid flat environment. Ph.D. thesis. Washington State Univ. Google Scholar
  11. Klausmeier, C. A. (1999). Regular and irregular patterns in semiarid vegetation. Science, 284, 1826–1828. CrossRefGoogle Scholar
  12. Kondo, S., & Miura, T. (2010). Reaction–diffusion model as a framework for understanding biological pattern formation. Science, 329, 1616–1620. MathSciNetMATHCrossRefGoogle Scholar
  13. Kuske, R., & Matkowsky, B. J. (1994). On roll, square, and hexagonal cellular flames. European Journal of Applied Mathematics, 5, 65–93. MATHCrossRefGoogle Scholar
  14. Lefever, R., & Lejeune, O. (1997). On the origin of tiger bush. Bulletin of Mathematical Biology, 59, 263–294. MATHCrossRefGoogle Scholar
  15. Lejeune, O., Tildi, M., & Lefever, R. (2004). Vegetation spots and stripes in arid landscapes. International Journal of Quantum Chemistry, 98, 261–271. CrossRefGoogle Scholar
  16. Macfaydyen, W. A. (1950). Soil and vegetation in British somaliland. Nature, 165, 121. CrossRefGoogle Scholar
  17. Meron, E., Gilad, E., von Hardenberg, J., Shachak, M., & Zarmi, Y. (2004). Vegetation patterns along a rainfall gradient. Chaos, Solitons and Fractals, 19, 367–376. MATHCrossRefGoogle Scholar
  18. Murray, J. D. (2003). Mathematical biology II. New York: Springer. Google Scholar
  19. Okubo, A., & Levin, S. A. (2001). Diffusion and ecological problems: modern perspectives. New York: Springer. Google Scholar
  20. Rietkerk, M., Boerlijst, M. C., van Langevelde, F., HilleRisLambers, R., van de Koppel, J., Kumar, L., Prins, H. H. T., & de Roos, A. M. (2002). Self-organization of vegetation in arid ecosystems. American Naturalist, 160, 524–530. CrossRefGoogle Scholar
  21. Rietkerk, M., Decker, S. C., de Ruiter, P. C., & van de Koppel, J. (2004). Self-organized patchiness and catastrophic shift in ecosystems. Science, 305, 1926–1929. CrossRefGoogle Scholar
  22. Rovinsky, A. B., & Menzinger, M. (1992). Chemical instability induced by a differential flow. Physical Review Letters, 69, 1193–1196. CrossRefGoogle Scholar
  23. Segel, L. A. (1965). The nonlinear interaction of a finite number of disturbances in a layer of fluid heated from below. Journal of Fluid Mechanics, 21, 359–384. MathSciNetMATHCrossRefGoogle Scholar
  24. Segel, L. A., & Levin, S. A. (1976). Applications of nonlinear stability theory to the study of the effects of diffusion on predator-prey interactions. In R. A. Piccirelli (Ed.), Topics in statistical mechanics and biophysics: A memorial to Julius J. Jackson (pp. 123–152). New York: Amer. Inst. Phys. Google Scholar
  25. Sherratt, J. A. (2005). An analysis of vegetative stripe formation in semi-arid landscape. Journal of Mathematical Biology, 51, 183–197. MathSciNetMATHCrossRefGoogle Scholar
  26. Sherratt, J. A., & Lord, G. J. (2007). Nonlinear dynamics and pattern bifurcations in a model for vegetation stripes in semi-arid environments. Theoretical Population Biology, 71, 1–11. MATHCrossRefGoogle Scholar
  27. Stuart, J. T. (1960). On the nonlinear mechanics of wave disturbances in stable and unstable parallel flows. Part 1. The basic behavior of plane Poiseuille flow. Journal of Fluid Mechanics, 9, 353–370. MathSciNetMATHCrossRefGoogle Scholar
  28. Turing, A. M. (1952). The chemical basis of morphogenesis. Phil. Trans. Roy. Soc. London B, 237, 37–72. CrossRefGoogle Scholar
  29. Ursino, N. (2005). The influence of soil properties on the formation of unstable vegetation patterns on hillsides of semiarid catchments. Advances in Water Resources, 28, 956–963. CrossRefGoogle Scholar
  30. Von Hardenberg, J., Meron, E., Shachak, M., & Zarmi, Y. (2001). Diversity of vegetation patterns and desertification. Physical Review Letters, 87, 198101. CrossRefGoogle Scholar
  31. Walgraef, D. (1997). Spatio-temporal pattern formation. New York: Springer. CrossRefGoogle Scholar
  32. Wang, R.-H., Liu, Q.-X., Sun, G.-Q., Jin, A., & van de Koppel, J. (2009). Nonlinear dynamic and pattern bifurcations in a model for spatial patterns in young mussel beds. Journal of the Royal Society Interface, 6, 705–718. Google Scholar
  33. Watson, J. (1960). On the nonlinear mechanics of wave disturbances in stable and unstable flows. Part 2: The development of a solution for plane Poiseuille flow and for plane Couette flow. Journal of Fluid Mechanics, 9, 371–389. MathSciNetMATHCrossRefGoogle Scholar
  34. Wollkind, D. J., Manoranjan, V. S., & Zhang, L. (1994). Weakly nonlinear stability analyses of prototype reaction–diffusion model equations. SIAM Review, 36, 176–214. MathSciNetMATHCrossRefGoogle Scholar
  35. Wollkind, D. J., & Stephenson, L. E. (2000). Chemical Turing pattern formation analyses: Comparison of theory with experiment. SIAM Journal on Applied Mathematics, 61, 387–431. MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Society for Mathematical Biology 2011

Authors and Affiliations

  1. 1.Department of MathematicsWashington State UniversityPullmanUSA

Personalised recommendations