Bulletin of Mathematical Biology

, Volume 74, Issue 4, pp 769–802 | Cite as

Synchrony and Asynchrony for Neuronal Dynamics Defined on Complex Networks

Original Article

Abstract

We describe and analyze a model for a stochastic pulse-coupled neuronal network with many sources of randomness: random external input, potential synaptic failure, and random connectivity topologies. We show that different classes of network topologies give rise to qualitatively different types of synchrony: uniform (Erdős–Rényi) and “small-world” networks give rise to synchronization phenomena similar to that in “all-to-all” networks (in which there is a sharp onset of synchrony as coupling is increased); in contrast, in “scale-free” networks the dependence of synchrony on coupling strength is smoother. Moreover, we show that in the uniform and small-world cases, the fine details of the network are not important in determining the synchronization properties; this depends only on the mean connectivity. In contrast, for scale-free networks, the dynamics are significantly affected by the fine details of the network; in particular, they are significantly affected by the local neighborhoods of the “hubs” in the network.

Keywords

Neural network Neuronal network Synchrony Mean-field analysis Stochastic integrate-and-fire Random graphs Scale-free networks Small world networks Complex networks Erdős–Rényi 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbott, L. F., & van Vreeswijk, C. (1993). Asynchronous states in networks of pulse-coupled oscillators. Phys. Rev. E, 48(2), 1483–1490. CrossRefGoogle Scholar
  2. Abrams, D. M., Mirollo, R., Strogatz, S. H., & Wiley, D. A. (2008). Solvable model for chimera states of coupled oscillators. Phys. Rev. Lett., 101(8), 084103. CrossRefGoogle Scholar
  3. Albert, R., & Barabási, A.-L. (2002). Statistical mechanics of complex networks. Rev. Mod. Phys., 74(1), 47–97. MATHCrossRefGoogle Scholar
  4. Alon, N., & Spencer, J.H. (2008). Wiley-Interscience series in discrete mathematics and optimization. The probabilistic method (3rd ed.). Hoboken: Wiley. With an appendix on the life and work of Paul Erdős. MATHCrossRefGoogle Scholar
  5. Apfaltrer, F., Ly, C., & Tranchina, D. (2006). Population density methods for stochastic neurons with realistic synaptic kinetics: firing rate dynamics and fast computational methods. Network, Comput. Neural Syst., 17(4), 373–418. CrossRefGoogle Scholar
  6. Arenas, A., Díaz-Guilera, A., Kurths, J., Moreno, Y., & Zhou, C. (2008). Synchronization in complex networks. Phys. Rep., 469(3), 93–153. MathSciNetCrossRefGoogle Scholar
  7. Barabási, A.-L., & Albert, R. (1999). Emergence of scaling in random networks. Science, 286(5439), 509–512. MathSciNetCrossRefGoogle Scholar
  8. Barahona, M., & Pecora, L. M. (2002). Synchronization in small-world systems. Phys. Rev. Lett., 89(5), 054101. CrossRefGoogle Scholar
  9. Bascompte, J. (2007). Networks in ecology. Basic Appl. Ecol., 8(6), 485–490. CrossRefGoogle Scholar
  10. Beggs, J. M., & Plenz, D. (2003). Neuronal avalanches in neocortical circuits. J. Neurosci., 23(35), 11167–11177. Google Scholar
  11. Beggs, J. M., & Plenz, D. (2004). Neuronal avalanches are diverse and precise activity patterns that are stable for many hours in cortical slice cultures. J. Neurosci., 24(22), 5216–5229. CrossRefGoogle Scholar
  12. Bhan, A., Galas, D. J., & Dewey, T. G. (2002). A duplication growth model of gene expression networks. Bioinformatics, 18(11), 1486–1493. CrossRefGoogle Scholar
  13. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., & Hwang, D.-U. (2006). Complex networks: structure and dynamics. Phys. Rep., 424(4–5), 175–308. MathSciNetCrossRefGoogle Scholar
  14. Bollobás, B. (2001). Cambridge studies in advanced mathematics: Vol. 73. Random graphs (2nd ed.). Cambridge: Cambridge University Press. MATHCrossRefGoogle Scholar
  15. Bollobás, B., Borgs, C., Chayes, J., & Riordan, O. (2003). Directed scale-free graphs. In Proceedings of the fourteenth annual ACM-SIAM symposium on discrete algorithms (pp. 132–139), Baltimore, MD, 2003. New York: ACM. Google Scholar
  16. Bower, J. M., & Bolouri, H. (Eds.) (2001). Computational modeling of genetic and biochemical networks. Cambridge: MIT Press. Google Scholar
  17. Bressloff, P. C., & Coombes, S. (1998a). Traveling waves in a chain of pulse-coupled oscillators. Phys. Rev. Lett., 80(21), 4815–4818. CrossRefGoogle Scholar
  18. Bressloff, P. C., & Coombes, S. (1998b). Desynchronization, mode locking, and bursting in strongly coupled integrate-and-fire oscillators. Phys. Rev. Lett., 81(10), 2168–2171. CrossRefGoogle Scholar
  19. Bressloff, P. C., & Coombes, S. (1998c). Desynchronization, mode locking, and bursting in strongly coupled integrate-and-fire oscillators. Phys. Rev. Lett., 81(10), 2168–2171. CrossRefGoogle Scholar
  20. Bressloff, P. C., & Coombes, S. (2000). A dynamical theory of spike train transitions in networks of integrate-and-fire oscillators. SIAM J. Appl. Math., 60(3), 820–841 (electronic). MathSciNetMATHCrossRefGoogle Scholar
  21. Bressloff, P. C., Coombes, S., & de Souza, B. (1997). Dynamics of a ring of pulse-coupled oscillators: group-theoretic approach. Phys. Rev. Lett., 79(15), 2791–2794. CrossRefGoogle Scholar
  22. Brunel, N., & Hakim, V. (1999). Fast global oscillations in networks of integrate-and-fire neurons with low firing rates. Neural Comput., 11(7), 1621–1671. CrossRefGoogle Scholar
  23. Cai, D., Tao, L., Shelley, M., & McLaughlin, D. W. (2004). An effective kinetic representation of fluctuation-driven neuronal networks with application to simple and complex cells in visual cortex. Proc. Natl. Acad. Sci. USA, 101(20), 7757–7762. CrossRefGoogle Scholar
  24. Cai, D., Tao, L., Rangan, A. V., & McLaughlin, D. W. (2006). Kinetic theory for neuronal network dynamics. Commun. Math. Sci., 4(1), 97–127. MathSciNetMATHGoogle Scholar
  25. Campbell, S. R., Wang, D. L. L., & Jayaprakash, C. (1999). Synchrony and desynchrony in integrate-and-fire oscillators. Neural Comput., 11(7), 1595–1619. CrossRefGoogle Scholar
  26. Dayan, P., & Abbott, L. F. (2001). Theoretical neuroscience: computational and mathematical modeling of neural systems. Cambridge: MIT Press. MATHGoogle Scholar
  27. Dellnitz, M., Golubitsky, M., Hohmann, A., & Stewart, I. (1995). Spirals in scalar reaction-diffusion equations. Int. J. Bifurc. Chaos Appl. Sci. Eng., 5(6), 1487–1501. MathSciNetMATHCrossRefGoogle Scholar
  28. DeVille, R. E. L., & Peskin, C.S. (2008). Synchrony and asynchrony in a fully stochastic neural network. Bull. Math. Biol., 70(6), 1608–1633. MathSciNetMATHCrossRefGoogle Scholar
  29. DeVille, R. E. L., Peskin, C. S., & Spencer, J. H. (2010). Dynamics of stochastic neuronal networks and the connections to random graph theory. Math. Model. Nat. Process., 5(2), 26–66. MathSciNetMATHCrossRefGoogle Scholar
  30. Dionne, B., Golubitsky, M., Silber, M., & Stewart, I. (1995). Time-periodic spatially periodic planforms in Euclidean equivariant partial differential equations. Philos. Trans. R. Soc. Lond., Ser. A, 352(1698), 125–168. MathSciNetMATHCrossRefGoogle Scholar
  31. Dionne, B., Golubitsky, M., & Stewart, I. (1996a). Coupled cells with internal symmetry. I. Wreath products. Nonlinearity, 9(2), 559–574. MathSciNetMATHCrossRefGoogle Scholar
  32. Dionne, B., Golubitsky, M., & Stewart, I. (1996b). Coupled cells with internal symmetry. II. Direct products. Nonlinearity, 9(2), 575–599. MathSciNetMATHCrossRefGoogle Scholar
  33. Erdős, P., & Rényi, A. (1959). On random graphs. I. Publ. Math. (Debr.), 6, 290–297. Google Scholar
  34. Erdős, P., & Rényi, A. (1960). On the evolution of random graphs. Magy. Tud. Akad. Mat. Kut. Intéz. Közl., 5, 17–61. Google Scholar
  35. Eurich, C. W., Herrmann, J. M., & Ernst, U. A. (2002). Finite-size effects of avalanche dynamics. Phys. Rev. E, 66(6), 066137. CrossRefGoogle Scholar
  36. Field, M., Golubitsky, M., & Stewart, I. (1991). Bifurcations on hemispheres. J. Nonlinear Sci., 1(2), 201–223. MathSciNetMATHCrossRefGoogle Scholar
  37. Gerstner, W., & van Hemmen, J. L. (1993). Coherence and incoherence in a globally-coupled ensemble of pulse-emitting units. Phys. Rev. Lett., 71(3), 312–315. CrossRefGoogle Scholar
  38. Goel, P., & Ermentrout, B. (2002). Synchrony, stability, and firing patterns in pulse-coupled oscillators. Phys. D, Nonlinear Phenom., 163(3–4), 191–216. MathSciNetMATHCrossRefGoogle Scholar
  39. Golubitsky, M., & Stewart, I. (1984). Hopf bifurcation in the presence of symmetry. Bull. Am. Math. Soc., 11(2), 339–342. MathSciNetMATHCrossRefGoogle Scholar
  40. Golubitsky, M., & Stewart, I. (1985). Hopf bifurcation in the presence of symmetry. Arch. Ration. Mech. Anal., 87(2), 107–165. MathSciNetMATHCrossRefGoogle Scholar
  41. Golubitsky, M., & Stewart, I. (1986a). Hopf bifurcation with dihedral group symmetry: coupled nonlinear oscillators. In Contemp. math.: Vol. 56. Multiparameter bifurcation theory, Arcata, Calif., 1985 (pp. 131–173). Providence: Am. Math. Soc. CrossRefGoogle Scholar
  42. Golubitsky, M., & Stewart, I. (1986b). Symmetry and stability in Taylor-Couette flow. SIAM J. Math. Anal., 17(2), 249–288. MathSciNetMATHCrossRefGoogle Scholar
  43. Golubitsky, M., & Stewart, I. (1987). Generic bifurcation of Hamiltonian systems with symmetry. Physica D, 24(1–3), 391–405. With an appendix by Jerrold Marsden. MathSciNetMATHCrossRefGoogle Scholar
  44. Golubitsky, M., & Stewart, I. (1999a). Symmetry and pattern formation in coupled cell networks. In IMA Math. Appl.: Vol. 115. Pattern formation in continuous and coupled systems (pp. 65–82), Minneapolis, MN, 1998. New York: Springer. CrossRefGoogle Scholar
  45. Golubitsky, M., & Stewart, I. (1999b). Symmetry and pattern formation in coupled cell networks. In IMA Vol. Math. Appl.: Vol. 115. Pattern formation in continuous and coupled systems (pp. 65–82), Minneapolis, MN, 1998. New York: Springer. CrossRefGoogle Scholar
  46. Golubitsky, M., & Stewart, I. (2002a). Progress in mathematics: Vol. 200. The symmetry perspective. Basel: Birkhäuser. From equilibrium to chaos in phase space and physical space. MATHCrossRefGoogle Scholar
  47. Golubitsky, M., & Stewart, I. (2002b). Patterns of oscillation in coupled cell systems. In Geometry, mechanics, and dynamics (pp. 243–286). New York: Springer. CrossRefGoogle Scholar
  48. Golubitsky, M., & Stewart, I. (2002c). Progress in mathematics: Vol. 200. The symmetry perspective. Basel: Birkhäuser. From equilibrium to chaos in phase space and physical space. MATHCrossRefGoogle Scholar
  49. Golubitsky, M., & Stewart, I. (2005). Synchrony versus symmetry in coupled cells. In EQUADIFF (pp. 13–24), World Sci. Publ., Hackensack. Google Scholar
  50. Golubitsky, M., & Stewart, I. (2006). Nonlinear dynamics of networks: the groupoid formalism. Bull. Am. Math. Soc., 43(3), 305–364. MathSciNetMATHCrossRefGoogle Scholar
  51. Golubitsky, M., Stewart, I., & Schaeffer, D. G. (1988). Applied mathematical sciences: Vol. 69. Singularities and groups in bifurcation theory, Vol. II. New York: Springer. CrossRefGoogle Scholar
  52. Golubitsky, M., Stewart, I., & Dionne, B. (1994). Coupled cells: wreath products and direct products. In NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci.: Vol. 437. Dynamics, bifurcation and symmetry, Cargèse, 1993 (pp. 127–138). Dordrecht: Kluwer Academic. Google Scholar
  53. Golubitsky, M., Stewart, I., Buono, P.-L., & Collins, J. J. (1998). A modular network for legged locomotion. Physica D, 115(1–2), 56–72. MathSciNetMATHCrossRefGoogle Scholar
  54. Golubitsky, M., Knobloch, E., & Stewart, I. (2000). Target patterns and spirals in planar reaction-diffusion systems. J. Nonlinear Sci., 10(3), 333–354. MathSciNetMATHCrossRefGoogle Scholar
  55. Golubitsky, M., Nicol, M., & Stewart, I. (2004a). Some curious phenomena in coupled cell networks. J. Nonlinear Sci., 14(2), 207–236. MathSciNetMATHCrossRefGoogle Scholar
  56. Golubitsky, M., Pivato, M., & Stewart, I. (2004b). Interior symmetry and local bifurcation in coupled cell networks. Dyn. Syst., 19(4), 389–407. MathSciNetMATHCrossRefGoogle Scholar
  57. Golubitsky, M., Stewart, I., & Török, A. (2005). Patterns of synchrony in coupled cell networks with multiple arrows. SIAM J. Appl. Dyn. Syst., 4(1), 78–100 (electronic). MathSciNetMATHCrossRefGoogle Scholar
  58. Golubitsky, M., Josić, K., & Shea-Brown, E. (2006). Winding numbers and average frequencies in phase oscillator networks. J. Nonlinear Sci., 16(3), 201–231. MathSciNetMATHCrossRefGoogle Scholar
  59. Golubitsky, M., Shiau, L., & Stewart, I. (2007). Spatiotemporal symmetries in the disynaptic canal-neck projection. SIAM J. Appl. Math., 67(5), 1396–1417 (electronic). MathSciNetMATHCrossRefGoogle Scholar
  60. Hansel, D., Mato, G., & Meunier, C. (1993). Clustering and slow switching in globally coupled phase oscillators. Phys. Rev. E, 48(5), 3470–3477. CrossRefGoogle Scholar
  61. Haskell, E., Nykamp, D. Q., & Tranchina, D. (2001). Population density methods for large-scale modelling of neuronal networks with realistic synaptic kinetics: cutting the dimension down to size. Network, Comput. Neural Syst., 12(2), 141–174. MATHGoogle Scholar
  62. Hong, H., Choi, M. Y., & Kim, B. J. (2002). Synchronization on small-world networks. Phys. Rev. E, 65(2), 026139. CrossRefGoogle Scholar
  63. Huygens, C. (1673). Horoloquium oscilatorium. Paris: Parisiis. Google Scholar
  64. Janson, S., Łuczak, T., & Rucinski, A. (2000). Wiley-Interscience series in discrete mathematics and optimization. Random graphs. New York: Wiley-Interscience. MATHCrossRefGoogle Scholar
  65. Knight, B. W. (1972). Dynamics of encoding in a population of neurons. J. Gen. Physiol., 59(6), 734–766. MathSciNetCrossRefGoogle Scholar
  66. Kuramoto, Y. (1984). Springer series in synergetics: Vol. 19. Chemical oscillations, waves, and turbulence. Berlin: Springer. MATHCrossRefGoogle Scholar
  67. Kuramoto, Y. (1991). Collective synchronization of pulse-coupled oscillators and excitable units. Physica D, 50(1), 15–30. MATHGoogle Scholar
  68. Lago-Fernández, L. F., Huerta, R., Corbacho, F., & Sigüenza, J. A. (2000). Fast response and temporal coherent oscillations in small-world networks. Phys. Rev. Lett., 84(12), 2758–2761. CrossRefGoogle Scholar
  69. Leclerc, R. D. (2008). Survival of the sparsest: robust gene networks are parsimonious. Molecular Systems Biology, 4(213). Google Scholar
  70. Levina, A., Herrmann, J. M., & Geisel, T. (2007). Dynamical synapses causing self-organized criticality in neural networks. Nat. Phys., 3, 857–960. CrossRefGoogle Scholar
  71. Levina, A., Herrmann, J. M., & Geisel, T. (2009). Phase transitions towards criticality in a neural system with adaptive interactions. Phys. Rev. Lett., 102(11), 118110. CrossRefGoogle Scholar
  72. Lindner, B., García-Ojalvo, J., Neiman, A., & Schimansky-Geier, L. (2004). Effects of noise in excitable systems. Phys. Rep., 392(6), 321–424. CrossRefGoogle Scholar
  73. Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., & Alon, U. (2002). Network motifs: simple building blocks of complex networks. Science, 298(5594), 824–827. CrossRefGoogle Scholar
  74. Mirollo, R. E., & Strogatz, S. H. (1990). Synchronization of pulse-coupled biological oscillators. SIAM J. Appl. Math., 50(6), 1645–1662. MathSciNetMATHCrossRefGoogle Scholar
  75. Mirollo, R. E., & Strogatz, S. H. (2005). The spectrum of the locked state for the Kuramoto model of coupled oscillators. Phys. D, Nonlinear Phenom., 205(1–4), 249–266. Synchronization and pattern formation in nonlinear systems: new developments and future perspectives. MathSciNetMATHCrossRefGoogle Scholar
  76. Mirollo, R., & Strogatz, S. H. (2007). The spectrum of the partially locked state for the Kuramoto model. J. Nonlinear Sci., 17, 309–347. 10.1007/s00332-006-0806-x. MathSciNetMATHCrossRefGoogle Scholar
  77. Newman, M. E. J. (2003). The structure and function of complex networks. SIAM Rev., 45(2), 167–256 (electronic). MathSciNetMATHCrossRefGoogle Scholar
  78. Nishikawa, T., Motter, A. E., Lai, Y.-C., & Hoppensteadt, F. C. (2003). Heterogeneity in oscillator networks: are smaller worlds easier to synchronize? Phys. Rev. Lett., 91(1), 014101. CrossRefGoogle Scholar
  79. Peskin, C. S. (1975). Mathematical aspects of heart physiology. New York: Courant Institute of Mathematical Sciences New York University. Notes based on a course given at New York University during the year 1973/1974. See http://math.nyu.edu/faculty/peskin/heartnotes/index.html. MATHGoogle Scholar
  80. Pikovsky, A., Rosenblum, M., & Kurths, J. (2003). Synchronization: a universal concept in nonlinear sciences. Cambridge: Cambridge University Press. MATHGoogle Scholar
  81. Schlitt, T., & Brazma, A. (2007). Current approaches to gene regulatory network modelling. BMC Bioinformatics, 8(6). Google Scholar
  82. Senn, W., & Urbanczik, R. (2000/2001). Similar nonleaky integrate-and-fire neurons with instantaneous couplings always synchronize. SIAM J. Appl. Math., 61(4), 1143–1155 (electronic). MathSciNetGoogle Scholar
  83. Shmulevich, I., Dougherty, E. R., Kim, S., & Zhang, W. (2002). Probabilistic boolean networks: a rule-based uncertainty model for gene regulatory networks. Bioinformatics, 18(2), 261–274. CrossRefGoogle Scholar
  84. Sirovich, L. (2003). Dynamics of neuronal populations: eigenfunction theory; some solvable cases. Network, Comput. Neural Syst., 14(2), 249–272. MathSciNetCrossRefGoogle Scholar
  85. Sirovich, L., Omrtag, A., & Knight, B. W. (2000). Dynamics of neuronal populations: the equilibrium solution. SIAM J. Appl. Math., 60(6), 2009–2028. MathSciNetMATHCrossRefGoogle Scholar
  86. Stewart, I., Golubitsky, M., & Pivato, M. (2003). Symmetry groupoids and patterns of synchrony in coupled cell networks. SIAM J. Appl. Dyn. Syst., 2(4), 609–646 (electronic). MathSciNetMATHCrossRefGoogle Scholar
  87. Strogatz, S. (2003). Sync: the emerging science of spontaneous order. New York: Hyperion. Google Scholar
  88. Terman, D., Kopell, N., & Bose, A. (1998). Dynamics of two mutually coupled slow inhibitory neurons. Physica D, 117(1–4), 241–275. MathSciNetMATHCrossRefGoogle Scholar
  89. Tsodyks, M., Mitkov, I., & Sompolinsky, H. (1993). Pattern of synchrony in inhomogeneous networks of oscillators with pulse interactions. Phys. Rev. Lett., 71(8), 1280–1283. CrossRefGoogle Scholar
  90. van Vreeswijk, C., Abbott, L., & Ermentrout, G. (1994). When inhibition not excitation synchronizes neural firing. J. Comput. Neurosci., 313–322. Google Scholar
  91. Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ‘small-world’ networks. Nature, 393(6684), 440–442. CrossRefGoogle Scholar
  92. Wilkinson, D. J. (2006). Stochastic modelling for systems biology. Chapman & Hall/CRC mathematical and computational biology series. Boca Raton: Chapman & Hall/CRC. MATHGoogle Scholar
  93. Winfree, A. T. (2001). The geometry of biological time. Interdisciplinary applied mathematics (2nd ed., Vol. 12). New York: Springer. MATHGoogle Scholar
  94. Zhao, F., Yang, H., & Wang, B. (2005). Scaling invariance in spectra of complex networks: a diffusion factorial moment approach. Phys. Rev. E, 72(4), 046119. CrossRefGoogle Scholar

Copyright information

© Society for Mathematical Biology 2011

Authors and Affiliations

  1. 1.University of IllinoisUrbanaUSA
  2. 2.Courant InstituteNew YorkUSA

Personalised recommendations