Advertisement

Bulletin of Mathematical Biology

, Volume 74, Issue 1, pp 232–255 | Cite as

The Orientation of Swimming Biflagellates in Shear Flows

  • Stephen O’Malley
  • Martin A. Bees
Original Article

Abstract

Biflagellated algae swim in mean directions that are governed by their environments. For example, many algae can swim upward on average (gravitaxis) and toward downwelling fluid (gyrotaxis) via a variety of mechanisms. Accumulations of cells within the fluid can induce hydrodynamic instabilities leading to patterns and flow, termed bioconvection, which may be of particular relevance to algal bioreactors and plankton dynamics. Furthermore, knowledge of the behavior of an individual swimming cell subject to imposed flow is prerequisite to a full understanding of the scaled-up bulk behavior and population dynamics of cells in oceans and lakes; swimming behavior and patchiness will impact opportunities for interactions, which are at the heart of population models. Hence, better estimates of population level parameters necessitate a detailed understanding of cell swimming bias. Using the method of regularized Stokeslets, numerical computations are developed to investigate the swimming behavior of and fluid flow around gyrotactic prolate spheroidal biflagellates with five distinct flagellar beats. In particular, we explore cell reorientation mechanisms associated with bottom-heaviness and sedimentation and find that they are commensurate and complementary. Furthermore, using an experimentally measured flagellar beat for Chlamydomonas reinhardtii, we reveal that the effective cell eccentricity of the swimming cell is much smaller than for the inanimate body alone, suggesting that the cells may be modeled satisfactorily as self-propelled spheres. Finally, we propose a method to estimate the effective cell eccentricity of any biflagellate when flagellar beat images are obtained haphazardly.

Keywords

Swimming algae Upswimming Gravitaxis Effective eccentricity Biflagellate Regularized Stokeslets Gyrotaxis Sedimentation torque 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bees, M. A., & Hill, N. A. (1997). Wavelengths of bioconvection patterns. J. Exp. Biol., 200, 1515–1526. Google Scholar
  2. Bees, M. A., Hill, N. A., & Pedley, T. J. (1998). Analytical approximations for the orientation distribution of small dipolar particles in steady shear flows. J. Math. Biol., 36, 269–298. MathSciNetzbMATHCrossRefGoogle Scholar
  3. Cisneros, L. H., Cortez, R., Dombrowski, C., Goldstein, R. E., & Kessler, J. O. (2007). Fluid dynamics of self-propelled micro-organisms, from individuals to concentrated populations. Exp. Fluids, 43, 737–753. CrossRefGoogle Scholar
  4. Cortez, R. (2001). The method of regularized stokeslets. SIAM J. Sci. Comput., 23, 1204–1225. MathSciNetzbMATHCrossRefGoogle Scholar
  5. Cortez, R., Cowen, N., Dillon, R., & Fauci, L. (2004). Simulation of swimming organisms: coupling internal mechanics with external fluid dynamics. Comput. Sci. Eng., 6, 38–45. CrossRefGoogle Scholar
  6. Cortez, R., Fauci, L., & Medovikov, A. (2005). The method of regularized stokeslets in three dimensions: Analysis, validation, and application to helical swimming. Phys. Fluids 17. Google Scholar
  7. Drescher, K., Goldstein, R. E., Michel, N., Polin, M., & Tuval, I. (2010). Direct measurement of the flow field around swimming microorganisms. Phys. Rev. Lett., 105, 168101. CrossRefGoogle Scholar
  8. Fauci, L. J. (1993). Computational model of the swimming of biflagellated algal cells. Contemp. Math., 141, 91–102. MathSciNetGoogle Scholar
  9. Fauci, L. J. (1996). A computational model of the fluid dynamics of undulatory and flagellar swimming. Am. Zool., 36, 599–607. Google Scholar
  10. Flores, H., Lobaton, E., Méndez-Diez, S., Tlupova, S., & Cortez, R. (2005). A study of bacterial flagellar bundling. Bull. Math. Biol., 67, 137–168. MathSciNetCrossRefGoogle Scholar
  11. Fulford, G. R., & Blake, J. R. (1986). Muco-ciliary transport in the lung. J. Theor. Biol., 121, 381–402. CrossRefGoogle Scholar
  12. Gray, J., & Hancock, G. J. (1955). The propulsion of sea-urchin spermatazoa. J. Exp. Biol., 32, 802–814. Google Scholar
  13. Guasto, J. S., Johnson, K. A., & Gollub, J.P. (2010). Oscillatory flows induced by microorganisms swimming in two dimensions. Phys. Rev. Lett. 105, 168102. CrossRefGoogle Scholar
  14. Häder, D. P., Hemmersbach, R., & Lebert, M. (2005). Gravity and the behavior of unicellular organisms. Cambridge: Cambridge University Press. CrossRefGoogle Scholar
  15. Hancock, G. J. (1953). The self-propulsion of microscopic organisms through liquids. Proc. R. Soc. A, 217, 96. MathSciNetzbMATHCrossRefGoogle Scholar
  16. Hill, N. A., & Bees, M. A. (2002). Taylor dispersion of gyrotactic swimming micro-organisms in a linear flow. Phys. Fluids, 14, 2598–2605. MathSciNetCrossRefGoogle Scholar
  17. Hill, N. A., & Häder, D. P. (1996). A biased random walk model for the trajectories of swimming micro-organisms. J. Theor. Biol., 41, 503–526. Google Scholar
  18. Hill, N. A., & Pedley, T. J. (2005). Bioconvection. Fluid Dyn. Res., 37, 1–20. MathSciNetzbMATHCrossRefGoogle Scholar
  19. Ishikawa, T., Sekiya, G., Imai, Y., & Yamaguchi, T. (2007). Hydrodynamic interaction of two swimming model micro-organisms. Biophys. J., 93, 2217–2225. CrossRefGoogle Scholar
  20. Jeffery, G. B. (1922). The motion of ellipsoidal particles immersed in a viscous fluid. Proc. R. Soc. Lond. A, 102, 161–179. CrossRefGoogle Scholar
  21. Johnson, R. E., & Brokaw, C. J. (1979). Flagellar hydrodynamics: A comparison between resistive-force theory and slender-body theory. Biophys. J., 25, 113–127. CrossRefGoogle Scholar
  22. Jones, M. (1995). Hydrodynamics of Biflagellate Locomotion. Ph.D. thesis. University of Leeds. Google Scholar
  23. Jones, M. S., Le Baron, L., & Pedley, T. J. (1994). Biflagellate gyrotaxis in a shear flow. J. Fluid Mech., 281, 137–158. MathSciNetzbMATHCrossRefGoogle Scholar
  24. Katz, D. F., & Pedrotti, L. (1977). Geotaxis by motile spermatozoa: hydrodynamic reorientation. J. Theor. Biol., 67, 723–732. CrossRefGoogle Scholar
  25. Kessler, J. O. (1986). Individual and collective fluid dynamics of swimming cells. J. Fluid Mech., 173, 191–205. CrossRefGoogle Scholar
  26. Lauga, E., & Powers, T. R. (2009). The hydrodynamics of swimming microorganisms. Rep. Prog. Phys. 72. Google Scholar
  27. Myerscough, M. R., & Swan, M. A. (1989). A model of swimming unipolar Spirilla. J. Theor. Biol., 139, 201–218. CrossRefGoogle Scholar
  28. Omoto, C. K., Gibbons, I. R., Kamiya, R., Shingyoji, C., Takahashi, K., & Witman, G. B. (1999). Rotation of the central pair microtubules in eukaryotic flagella. Mol. Biol. Cell, 10, 1–4. Google Scholar
  29. Pedley, T. J., Hill, N. A., & Kessler, J. O. (1988). The growth of bioconvection patterns in a uniform suspension of gyrotactic micro-organisms. J. Fluid Mech., 195, 223–237. MathSciNetzbMATHCrossRefGoogle Scholar
  30. Pedley, T. J., & Kessler, J. O. (1990). A new continuum model for suspensions of gyrotactic micro-organisms. J. Fluid Mech., 212, 155–182. MathSciNetzbMATHCrossRefGoogle Scholar
  31. Pedley, T. J., & Kessler, J. O. (1992). Hydrodynamic phenomena in suspensions of swimming micro-organisms. Annu. Rev. Fluid Mech., 24, 313–358. MathSciNetCrossRefGoogle Scholar
  32. Ramia, M. (1991). Numerical model for the locomotion of Spirilla. Biophys. J., 60, 1057–1078. CrossRefGoogle Scholar
  33. Ringo, D. L. (1967). Flagellar motion and fine structure of the flagellar apparatus in Chlamydomonas. J. Cell Biol., 33, 543–571. CrossRefGoogle Scholar
  34. Roberts, A. M. (2006). Mechanisms of gravitaxis in Chlamydomonas. Biol. Bull., 210, 78–80. CrossRefGoogle Scholar
  35. Rüffer, U., & Nultsch, W. (1985). High-speed cinematographic analysis of the movement of Chlamydomonas. Cell Motil. Cytoskelet., 5, 251–263. CrossRefGoogle Scholar
  36. Saad, Y., & Schultz, M. (1986). GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput., 7, 856–869. MathSciNetzbMATHCrossRefGoogle Scholar
  37. Smith, D. J. (2009). A boundary element regularized stokeslet method applied to cilia- and flagella-driven flow. Proc. R. Soc. A, 465, 3605–3626. zbMATHCrossRefGoogle Scholar
  38. Smith, D. J., Gaffney, E. A., & Blake, J. R. (2007). Discrete cilia modelling with singularity distributions: Application to the embryonic node and the airway surface liquid. Bull. Math. Biol., 69, 289–327. MathSciNetCrossRefGoogle Scholar

Copyright information

© Society for Mathematical Biology 2011

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of GlasgowGlasgowUK

Personalised recommendations