Bulletin of Mathematical Biology

, Volume 73, Issue 12, pp 3047–3070 | Cite as

Multigeneration Reproduction Ratios and the Effects of Clustered Unvaccinated Individuals on Epidemic Outbreak

  • David E. Hiebeler
  • Isaac J. Michaud
  • Hamilton Hoxie Ackerman
  • Shannon Reed Iosevich
  • Andre Robinson
Original Article

Abstract

An SIR epidemiological community-structured model is constructed to investigate the effects of clustered distributions of unvaccinated individuals and the distribution of the primary case relative to vaccination levels. The communities here represent groups such as neighborhoods within a city or cities within a region. The model contains two levels of mixing, where individuals make more intra-group than inter-group contacts. Stochastic simulations and analytical results are utilized to explore the model. An extension of the effective reproduction ratio that incorporates more spatial information by predicting the average number of tertiary infections caused by a single infected individual is introduced to characterize the system. Using these methods, we show that both the vaccination coverage and the variation in vaccination levels among communities affect the likelihood and severity of epidemics. The location of the primary infectious case and the degree of mixing between communities are also important factors in determining the dynamics of outbreaks. In some cases, increasing the efficacy of a vaccine can in fact increase the effective reproduction ratio in early generations, due to the effects of population structure on the likely initial location of an infection.

Keywords

Epidemiological models Vaccination Spatial clustering 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adler, F. R. (1992). The effects of averaging on the basic reproduction ratio. Math. Biosci., 111, 89–98. MATHCrossRefGoogle Scholar
  2. Bailey, N. T. (1953). The total size of a general stochastic epidemic. Biometrika, 40(1/2), 177–185. MathSciNetMATHCrossRefGoogle Scholar
  3. Ball, F. (1985). Deterministic and stochastic epidemics with several kinds of susceptibles. Adv. Appl. Probab., 17(1), 1–22. MATHCrossRefGoogle Scholar
  4. Ball, F., & Lyne, O. (2006). Optimal vaccination schemes for epidemics among a population of households, with application to variola minor in Brazil. Stat. Methods Med. Res., 15, 481–497. MathSciNetGoogle Scholar
  5. Ball, F., Mollison, D., & Scalia-Tomba, G. (1997). Epidemics with two levels of mixing. Ann. Appl. Probab., 7(1), 46–89. MathSciNetMATHCrossRefGoogle Scholar
  6. Ball, F. G., Britton, T., & Lyne, O. D. (2004). Stochastic multitype epidemics in a community of households: estimation of threshold parameter R and secure vaccination coverage. Biometrika, 91(2), 345–362. MathSciNetMATHCrossRefGoogle Scholar
  7. Barbour, A. D. (1978). Macdonald’s model and the transmission of bilharzia. Trans. R. Soc. Trop. Med. Hyg., 7e(1), 6–15. CrossRefGoogle Scholar
  8. Becker, N. G., & Dietz, K. (1995). The effect of household distribution on transmission and control of highly infectious diseases. Math. Biosci., 127, 207–219. MATHCrossRefGoogle Scholar
  9. Becker, N. G., & Starczak, D. N. (1997). Optimal vaccination strategies for a community of households. Math. Biosci., 139, 117–132. MATHCrossRefGoogle Scholar
  10. Black, S., Shinefield, H., Fireman, B., Lewis, E., Ray, P., Hansen, J. R., Elvin, L., Ensor, K. M., Hackell, J., Siber, G., Malinoski, F., Madore, D., Chang, I., Kohberger, R., Watson, W., Austrian, R., & Edwards, K., The Northern California Kaiser Permanente Vaccine Study Center Group (2000). Efficacy, safety and immunogenicity of heptavalent pneumococcal conjugate vaccine in children. Pediatr. Infect. Dis. J., 19(3), 187–195. CrossRefGoogle Scholar
  11. Briggs, H., & Ilett, S. (1993). Weak link in vaccine cold chain. Br. Med. J., 306, 557–558. CrossRefGoogle Scholar
  12. Calandrillo, S. P. (2004). Vanishing vaccinations: why are so many Americans opting out of vaccinating their children? Univ. Mich. J. Law Reform, 37(2), 353–440. Google Scholar
  13. CDC (1999a). Achievements in public health, 1900–1999: impact of vaccines universally recommended for children—United States, 1990–1998. Morb. Mort. Wkly. Rep., 48(12), 243–248. Google Scholar
  14. CDC (1999b). Ten great public health achievements—United States, 1900–1999. Morb. Mort. Wkly. Rep., 48(12), 241–243. Google Scholar
  15. Chen, R. T., Davis, R. L., & Sheedy, K. M. (2004). Safety of immunizations. In S. A. Plotkin, W. A. Orenstein, & P. A. Offit (Eds.), Vaccines, 4th edn. (pp. 1557–1581). Philadelphia: Saunders. Chapter 61. Google Scholar
  16. Coffield, A. B., Maciosek, M. V., McGinnis, J. M., Harris, J. R., Caldwell, M. B., Teutsch, S. M., Atkins, D., Richland, J. H., & Haddix, A. (2001). Priorities among recommended clinical preventive services. Am. J. Prev. Med., 21(1), 1–9. CrossRefGoogle Scholar
  17. Davies, P., Abbey, D. M., Schlafly, R., Nasir, L., & Wolfe, R. M. (2002). Antivaccination web sites. J. Am. Med. Assoc., 288(14), 1717–1718. CrossRefGoogle Scholar
  18. Diekmann, O., Heesterbeek, J., & Metz, J. (1990). On the definition and the computation of the basic reproduction ratio R 0 in models for infectious diseases in heterogeneous populations. J. Math. Biol., 28, 365–382. MathSciNetMATHCrossRefGoogle Scholar
  19. d’Onofrio, A., Manfredi, P., & Salinelli, E. (2007). Vaccinating behaviour, information, and the dynamics of SIR vaccine preventable diseases. Theor. Popul. Biol., 71, 301–317. MATHCrossRefGoogle Scholar
  20. Dye, C., & Hasibeder, G. (1986). Population dynamics of mosquito-borne disease: effects of flies which bite some people more frequently than others. Trans. R. Soc. Trop. Med. Hyg., 80, 69–77. CrossRefGoogle Scholar
  21. Fine, M. J., Smith, M. A., Carson, C. A., Meffe, F., Sankey, S. S., Weissfeld, L. A., Detsky, A. S., & Kapoor, W. N. (1994). Efficacy of pneumococcal vaccination in adults: a meta-analysis of randomized controlled trials. Arch. Intern. Med., 154(23), 2666–2677. Google Scholar
  22. Fine, P. E., & Clarkson, J. A. (1986). Individual versus public priorities in the determination of optimal vaccination policies. Am. J. Epidemiol., 124(6), 1012–1020. Google Scholar
  23. Gandon, S., Mackinnon, M., Nee, S., & Read, A. (2003). Imperfect vaccination: some epidemiological and evolutionary consequences. Proc. R. Soc. Lond. B, 270(1520), 1129–1136. CrossRefGoogle Scholar
  24. Gangarosa, E., Galazka, A., Wolfe, C., Phillips, L., Gangarosa, R., Miller, E., & Chen, R. (1998). Impact of anti-vaccine movements on pertussis control: the untold story. The Lancet, 351, 356–361. CrossRefGoogle Scholar
  25. Gart, J. J. (1968). The mathematical analysis of an epidemic with two kinds of susceptibles. Biometrics, 24(3), 557–566. CrossRefGoogle Scholar
  26. Gazmararian, J. A., Oster, N. V., Green, D. C., Schuessler, L., Howell, K., Davis, J., Krovisky, M., & Warburton, S. W. (2002). Vaccine storage practices in primary care physician offices. Am. J. Prev. Med., 23(4), 246–253. CrossRefGoogle Scholar
  27. Glass, K., Kappey, J., & Grenfell, B. (2004). The effect of heterogeneity in measles vaccination on population immunity. Epidemiol. Infect., 132(4), 675–683. CrossRefGoogle Scholar
  28. Goldstein, E., Paur, K., Fraser, C., Kenah, E., Wallinga, J., & Lipsitch, M. (2009). Reproductive numbers, epidemic spread and control in a community of households. Math. Biosci., 221, 11–25. MathSciNetMATHCrossRefGoogle Scholar
  29. Gross, P. A., Hermogenes, A. W., Sacks, H. S., Lau, J., & Levandowski, R. A. (1995). The efficacy of influenza vaccine in elderly persons: a meta-analysis and review of the literature. Ann. Intern. Med., 123(7), 518–527. Google Scholar
  30. Halloran, M. E., Haber, M., & Longini, I. M., Jr. (1992). Interpretation and estimation of vaccine efficacy under heterogeneity. Am. J. Epidemiol., 136(3), 328–343. Google Scholar
  31. Hasibeder, G., & Dye, C. (1988). Population dynamics of mosquito-borne disease: persistence in a completely heterogeneous environment. Theor. Popul. Biol., 33, 31–53. MathSciNetMATHCrossRefGoogle Scholar
  32. Hethcote, H. W. (1978). An immunization model for a heterogeneous population. Theor. Popul. Biol., 14, 338–349. MathSciNetCrossRefGoogle Scholar
  33. Hiebeler, D. E. (2006). Moment equations and dynamics of a household SIS epidemiological model. Bull. Math. Biol., 68(6), 1315–1333. MathSciNetCrossRefGoogle Scholar
  34. Hiebeler, D. E. (2007). Competing populations on fragmented landscapes with spatially structured heterogeneities: improved landscape generation and mixed dispersal strategies. J. Math. Biol., 54(3), 337–356. MathSciNetMATHCrossRefGoogle Scholar
  35. Hiebeler, D. E., & Criner, A. K. (2007). Partially mixed household epidemiological model with clustered resistant individuals. Phys. Rev. E, 75, 022901. CrossRefGoogle Scholar
  36. Hodge, J. G., Jr. (2002). School vaccination requirements: legal and social perspectives. NCSL State Legislative Report, 27(14), 1–14. MathSciNetGoogle Scholar
  37. House, T., & Keeling, M. J. (2008). Deterministic epidemic models with explicit household structure. Math. Biosci., 213, 29–39. MathSciNetMATHCrossRefGoogle Scholar
  38. Jacobson, R. M., Targonski, P. V., & Poland, G. A. (2007). A taxonomy of reasoning flaws in the anti-vaccine movement. Vaccine, 25, 3146–3152. CrossRefGoogle Scholar
  39. Jacquez, J. A., Simon, C. P., Koopman, J., Sattenspiel, L., & Perry, T. (1988). Modeling and analyzing HIV transmission: the effect of contact patterns. Math. Biosci., 92, 119–199. MathSciNetMATHCrossRefGoogle Scholar
  40. Keeling, M. J., & Grenfell, B. T. (2000). Individual-based perspectives on r 0. J. Theor. Biol., 203, 51–61. CrossRefGoogle Scholar
  41. Khalili, D., & Caplan, A. (2007). Off the grid: vaccinations among homeschooled children. J. Law Med. Ethics, 35(3), 471–477. CrossRefGoogle Scholar
  42. Kribs-Zaleta, C. M., & Velasco-Hernández, J. X. (2000). A simple vaccination model with multiple endemic states. Math. Biosci., 164, 183–201. MATHCrossRefGoogle Scholar
  43. Lerman, S. J., & Gold, E. (1971). Measles in children previously vaccinated against measles. JAMA, 216(8), 1311–1314. CrossRefGoogle Scholar
  44. Lu, Z., Chi, X., & Chen, L. (2002). The effect of constant and pulse vaccination on SIR epidemic model with horizontal and vertical transmission. Math. Comput. Model., 36, 1039–1057. MathSciNetMATHCrossRefGoogle Scholar
  45. Maayan-Metzger, A., Kedem-Friedrich, P., & Kuint, J. (2005). To vaccinate or not to vaccinate—that is the question: why are some mothers opposed to giving their infants hepatitis B vaccine? Vaccine, 23, 1941–1948. CrossRefGoogle Scholar
  46. Maldonado, Y. A. (2002). Current controversies in vaccination: vaccine safety. JAMA, 228(24), 3155–3158. CrossRefGoogle Scholar
  47. May, R. M., & Anderson, R. M. (1984). Spatial heterogeneity and the design of immunization programs. Math. Biosci., 72, 83–111. MathSciNetMATHCrossRefGoogle Scholar
  48. May, T., & Silverman, R. D. (2003). Clustering of exemptions’ as a collective action threat to herd immunity. Vaccine, 21, 1048–1051. CrossRefGoogle Scholar
  49. McNeil, D. G., Jr. (2002). When parents say no to child vaccinations. The New York Times, 30 Nov. 2002. Google Scholar
  50. Miller, J. C. (2008). Bounding the size and probability of epidemics on networks. J. Appl. Probab., 45, 498–512. MathSciNetMATHCrossRefGoogle Scholar
  51. Nold, A. (1980). Heterogeneity in disease-transmission modeling. Math. Biosci., 52(3–4), 227–240. MathSciNetMATHCrossRefGoogle Scholar
  52. O’Brien, K. L., Moulton, L. H., Reid, R., Weatherholtz, R., Oski, J., Brown, L., Kumar, G., Parkinson, A., Hu, D., Hackell, J., Chang, I., Kohberger, R., Siber, G., & Santosham, M. (2003). Efficacy and safety of seven-valent conjugate pneumococcal vaccine in American Indian children: group randomised trial. The Lancet, 362(9381), 355–361. CrossRefGoogle Scholar
  53. Omer, S. B., Pan, W. K., Halsey, N. A., Stokley, S., Moulton, L. H., Navar, A. M., Pierce, M., & Salmon, D. A. (2006). Nonmedical exemptions to school immunization requirements: secular trends and association of state policies with pertussis incidence. J. Am. Med. Assoc., 296(14), 1757–1763. CrossRefGoogle Scholar
  54. Orenstein, W. A., Douglas, R. G., Rodewald, L. E., & Hinman, A. R. (2005). Immunizations in the United States: success, structure, and stress. Health Aff., 24(3), 599–610. CrossRefGoogle Scholar
  55. Plotkin, S. L., & Plotkin, S. A. (2004). A short history of vaccination. In S. A. Plotkin, W. A. Orenstein, & P. A. Offit (Eds.), Vaccines, 4th edn. (pp. 1–15). Philadelphia: Saunders. Chapter 1. Google Scholar
  56. Poland, G. A., & Jacobson, R. M. (2001). Understanding those who do not understand: a brief review of the anti-vaccine movement. Vaccine, 19, 2440–2445. CrossRefGoogle Scholar
  57. Reluga, T. C. (2010). Game theory of social distancing in response to an epidemic. PLoS Comput. Biol., 6(5), e1000793. MathSciNetCrossRefGoogle Scholar
  58. Reluga, T. C., Bauch, C. T., & Galvani, A. P. (2006). Evolving public perceptions and stability in vaccine uptake. Math. Biosci., 204, 185–198. MathSciNetMATHCrossRefGoogle Scholar
  59. Rushton, S., & Mautner, A. (1955). The deterministic model of a simple epidemic for more than one community. Biometrika, 42, 126–132. MathSciNetMATHGoogle Scholar
  60. Salmon, D. A., Haber, M., Gangarosa, E. J., Phillips, L., Smith, N. J., & Chen, R. T. (1999). Health consequences of religious and philosophical exemptions from immunization laws. JAMA, 281(1), 47–53. CrossRefGoogle Scholar
  61. Salmon, D. A., & Siegel, A. W. (2001). Religious and philosophical exemptions from vaccine requirements and lessons learned from conscientious objectors from conscription. Public Health Rep., 116, 289–295. Google Scholar
  62. Schelling, T. C. (2006). Micromotives and macrobehavior. New York: Norton. Google Scholar
  63. Silverman, R. D. (2003). No more kidding around: restructuring non-medical childhood immunization exemptions to ensure public health protection. Ann. Health Law, 12, 277–294. Google Scholar
  64. Smith, P., Rodrigues, L., & Fine, P. (1984). Assessment of the protective efficacy of vaccines against common diseases using case-control and cohort studies. Int. J. Epidemiol., 13(1), 87–93. CrossRefGoogle Scholar
  65. Thompson, J. W., Tyson, S., Card-Higginson, P., Jacobs, R. F., Wheeler, J. G., Simpson, P., Bost, J. E., Ryan, K. W., & Salmon, D. A. (2007). Impact of addition of philosophical exemptions on childhood immunization rates. Am. J. Prev. Med., 32(3), 194–201. CrossRefGoogle Scholar
  66. van den Driessche, P., & Watmough, J. (2002). Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci., 180, 29–48. MathSciNetMATHCrossRefGoogle Scholar
  67. Wallinga, J., Heijne, J. C., & Kretzschmar, M. (2005). A measles epidemic threshold in a highly vaccinated population. PLoS Med., 2(11), 1152–1157. CrossRefGoogle Scholar
  68. Ward, J. I., Cherry, J. D., Chang, S.-J., Partridge, S., Lee, H., Treanor, J., Greenberg, D. P., Keitel, W., Barenkamp, S., Bernstein, D. I., Edelman, R., & Edwards, K. (2005). Efficacy of an acellular pertussis vaccine among adolescents and adults. N. Engl. J. Med., 353(15), 1555–1563. CrossRefGoogle Scholar
  69. Whittle, P. (1955). The outcome of a stochastic epidemic—a note on Bailey’s paper. Biometrika, 42(1/2), 116–122. MathSciNetMATHCrossRefGoogle Scholar
  70. Wickwire, K. (1977). Mathematical models for the control of pests and infectious diseases: a survey. Theor. Popul. Biol., 11, 182–238. MathSciNetCrossRefGoogle Scholar
  71. With, K. A. (1997). The application of neutral landscape models in conservation biology. Conserv. Biol., 11(5), 1069–1080. CrossRefGoogle Scholar
  72. Wolfe, R. M., Sharp, L. K., & Lipsky, M. S. (2002). Content and design attributes of antivaccination web sites. JAMA, 287(24), 3245–3248. CrossRefGoogle Scholar
  73. Wroe, A. L., Bhan, A., Salkovskis, P., & Bedford, H. (2005). Feeling bad about immunising our children. Vaccine, 23, 1428–1433. CrossRefGoogle Scholar
  74. Zanette, D. H., & Kuperman, M. (2002). Effects of immunization in small-world networks. Physica A, 309, 445–452. MATHCrossRefGoogle Scholar

Copyright information

© Society for Mathematical Biology 2011

Authors and Affiliations

  • David E. Hiebeler
    • 1
  • Isaac J. Michaud
    • 1
  • Hamilton Hoxie Ackerman
    • 2
    • 3
    • 6
  • Shannon Reed Iosevich
    • 4
    • 7
  • Andre Robinson
    • 5
  1. 1.Department of Mathematics and StatisticsUniversity of MaineOronoUSA
  2. 2.Department of Mathematics and StatisticsBoston UniversityBostonUSA
  3. 3.Biogen Idec, 14 Cambridge CenterCambridgeUSA
  4. 4.Department of MathematicsUniversity of MissouriColumbiaUSA
  5. 5.Department of MathematicsMedgar Evers CollegeBrooklynUSA
  6. 6.Department of StatisticsUniversity of California, BerkeleyBerkeleyUSA
  7. 7.Warner School of EducationUniversity of RochesterRochesterUSA

Personalised recommendations