Bulletin of Mathematical Biology

, Volume 74, Issue 1, pp 45–72 | Cite as

An Algebraic Approach to Signaling Cascades with n Layers

  • Elisenda Feliu
  • Michael Knudsen
  • Lars N. Andersen
  • Carsten Wiuf
Original Article

Abstract

Posttranslational modification of proteins is key in transmission of signals in cells. Many signaling pathways contain several layers of modification cycles that mediate and change the signal through the pathway. Here, we study a simple signaling cascade consisting of n layers of modification cycles such that the modified protein of one layer acts as modifier in the next layer. Assuming mass-action kinetics and taking the formation of intermediate complexes into account, we show that the steady states are solutions to a polynomial in one variable and in fact that there is exactly one steady state for any given total amounts of substrates and enzymes.

We demonstrate that many steady-state concentrations are related through rational functions that can be found recursively. For example, stimulus-response curves arise as inverse functions to explicit rational functions. We show that the stimulus-response curves of the modified substrates are shifted to the left as we move down the cascade. Further, our approach allows us to study enzyme competition, sequestration, and how the steady state changes in response to changes in the total amount of substrates.

Our approach is essentially algebraic and follows recent trends in the study of posttranslational modification systems.

Keywords

Mass action kinetics Sequestration Futile cycle Posttranslational modification Stimulus-response Rational function 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Angeli, D., & Sontag, E. D. (2008). Translation-invariant monotone systems and a global convergence result for enzymatic futile cycles. Nonlinear Anal., Real World Appl., 9(1), 128–140. MathSciNetMATHCrossRefGoogle Scholar
  2. Bardsley, W. G., & Childs, R. E. (1975). Sigmoid curves, non-linear double-reciprocal plots and allosterism. Biochem. J., 149, 313–328. Google Scholar
  3. Bluthgen, N., Bruggeman, F. J., Legewie, S., Herzel, H., Westerhoff, H. V., & Kholodenko, B. N. (2006). Effects of sequestration on signal transduction cascades. FEBS J., 273, 895–906. CrossRefGoogle Scholar
  4. Chaves, M., Sontag, E. D., & Dinerstein, R. J. (2004). Optimal length and signal amplification in weakly activated signal transduction cascades. J. Phys. Chem. B, 108(39), 15311–15320. CrossRefGoogle Scholar
  5. Conradi, C., Flockerzi, D., & Raisch, J. (2008). Multistationarity in the activation of a MAPK: parametrizing the relevant region in parameter space. Math. Biosci., 211, 105–131. MathSciNetMATHCrossRefGoogle Scholar
  6. Cooper, G. M., & Hausman, R. E. (2009). The cell (5th ed.). Washington: ASM Press. Google Scholar
  7. Craciun, G., & Feinberg, M. (2005). Multiple equilibria in complex chemical reaction networks. I. The injectivity property. SIAM J. Appl. Math., 65(5), 1526–1546 (electronic). MathSciNetMATHCrossRefGoogle Scholar
  8. Craciun, G., & Feinberg, M. (2006). Multiple equilibria in complex chemical reaction networks. II. The species-reaction graph. SIAM J. Appl. Math., 66(4), 1321–1338 (electronic). MathSciNetMATHCrossRefGoogle Scholar
  9. Craciun, G., & Feinberg, M. (2010). Multiple equilibria in complex chemical reaction networks: semiopen mass action systems. SIAM J. Appl. Math., 70(6), 1859–1877. MathSciNetMATHCrossRefGoogle Scholar
  10. Feliu, E., Andersen, L., Knudsen, M., & Wiuf, C. (2010). A general mathematical framework suitable for studying signaling cascades (submitted). Google Scholar
  11. Ferrell, J. E., & Xiong, W. (2001). Bistability in cell signaling: How to make continuous processes discontinuous, and reversible processes irreversible. Chaos, 11, 227–236. MATHCrossRefGoogle Scholar
  12. Goldbeter, A., & Koshland, D. E. (1981). An amplified sensitivity arising from covalent modification in biological systems. Proc. Natl. Acad. Sci. USA, 78, 6840–6844. MathSciNetCrossRefGoogle Scholar
  13. Goldbeter, A., & Koshland, D. E. (1984). Ultrasensitivity in biochemical systems controlled by covalent modification. Interplay between zero-order and multistep effects. J. Biol. Chem., 259, 14441–14447. Google Scholar
  14. Gunawardena, J. (2005). Multisite protein phosphorylation makes a good threshold but can be a poor switch. Proc. Natl. Acad. Sci. USA, 102, 14617–14622. CrossRefGoogle Scholar
  15. Gunawardena, J. (2007). Distributivity and processivity in multisite phosphorylation can be distinguished through steady-state invariants. Biophys. J., 93, 3828–3834. CrossRefGoogle Scholar
  16. Gunawardena, J. (2010). Biological systems theory. Science, 328, 581–582. CrossRefGoogle Scholar
  17. Heinrich, R., Neel, B. G., & Rapoport, T. A. (2002). Mathematical models of protein kinase signal transduction. Mol. Cell, 9, 957–970. CrossRefGoogle Scholar
  18. Huang, C. Y., & Ferrell, J. E. (1996). Ultrasensitivity in the mitogen-activated protein kinase cascade. Proc. Natl. Acad. Sci. USA, 93, 10078–10083. CrossRefGoogle Scholar
  19. Hurwitz, A. (1996). Über die Bedingungen, unter welchen eine Gleichung nur Wurzeln mit negativen reellen Theilen besitzt. In Internat. ser. numer. math.: Vol. 121. Stability theory (pp. 239–249), Ascona, 1995. Basel: Birkhäuser. Reprinted from Math. Ann., 44, 273–284 (1895). [JFM 26.0119.03]. Google Scholar
  20. Kholodenko, B. N., Hoek, J. B., Westerhoff, H. V., & Brown, G. C. (1997). Quantification of information transfer via cellular signal transduction pathways. FEBS Lett., 414, 430–434. CrossRefGoogle Scholar
  21. Lang, S. (2002). Graduate texts in mathematics: Vol. 211. Algebra (3rd ed.). New York: Springer. MATHCrossRefGoogle Scholar
  22. Legewie, S., Bluthgen, N., Schafer, R., & Herzel, H. (2005). Ultrasensitization: switch-like regulation of cellular signaling by transcriptional induction. PLoS Comput. Biol., 1, e54. CrossRefGoogle Scholar
  23. MacFarlane, R. G. (1964). An enzyme cascade in the blood clotting mechanism, and its function as a biochemical amplifier. Nature, 202, 498–499. CrossRefGoogle Scholar
  24. Markevich, N. I., Hoek, J. B., & Kholodenko, B. N. (2004). Signaling switches and bistability arising from multisite phosphorylation in protein kinase cascades. J. Cell Biol., 164, 353–359. CrossRefGoogle Scholar
  25. Meinke, M. H., Bishop, J. S., & Edstrom, R. D. (1986). Zero-order ultrasensitivity in the regulation of glycogen phosphorylase. Proc. Natl. Acad. Sci. USA, 83, 2865–2868. CrossRefGoogle Scholar
  26. Ortega, F., Garces, J. L., Mas, F., Kholodenko, B. N., & Cascante, M. (2006). Bistability from double phosphorylation in signal transduction. Kinetic and structural requirements. FEBS J., 273, 3915–3926. CrossRefGoogle Scholar
  27. Qiao, L., Nachbar, R. B., Kevrekidis, I. G., & Shvartsman, S. Y. (2007). Bistability and oscillations in the Huang-Ferrell model of MAPK signaling. PLoS Comput. Biol., 3, 1819–1826. MathSciNetCrossRefGoogle Scholar
  28. Qu, Z., & Vondriska, T. M. (2009). The effects of cascade length, kinetics and feedback loops on biological signal transduction dynamics in a simplified cascade model. Phys. Biol., 6, 016007. CrossRefGoogle Scholar
  29. Racz, E., & Slepchenko, B. M. (2008). On sensitivity amplification in intracellular signaling cascades. Phys. Biol., 5, 036004. CrossRefGoogle Scholar
  30. Salazar, C., & Höfer, T. (2006). Kinetic models of phosphorylation cycles: a systematic approach using the rapid-equilibrium approximation for protein-protein interactions. Biosystems, 83, 195–206. CrossRefGoogle Scholar
  31. Salazar, C., & Höfer, T. (2009). Multisite protein phosphorylation—from molecular mechanisms to kinetic models. FEBS J., 276, 3177–3198. CrossRefGoogle Scholar
  32. Shinar, G., & Feinberg, M. (2010). Structural sources of robustness in biochemical reaction networks. Science, 327, 1389–1391. CrossRefGoogle Scholar
  33. Thomson, M., & Gunawardena, J. (2009a). The rational parameterization theorem for multisite post-translational modification systems. J. Theor. Biol., 261, 626–636. CrossRefGoogle Scholar
  34. Thomson, M., & Gunawardena, J. (2009b). Unlimited multistability in multisite phosphorylation systems. Nature, 460, 274–277. CrossRefGoogle Scholar
  35. Ventura, A. C., Sepulchre, J. A., & Merajver, S. D. (2008). A hidden feedback in signaling cascades is revealed. PLoS Comput. Biol., 4, e1000,041. MathSciNetCrossRefGoogle Scholar
  36. Wang, L., & Sontag, E. D. (2008). On the number of steady states in a multiple futile cycle. J. Math. Biol., 57, 29–52. MathSciNetMATHCrossRefGoogle Scholar
  37. Waters, C. M., & Bassler, B. L. (2005). Quorum sensing: cell-to-cell communication in bacteria. Annu. Rev. Cell Dev. Biol., 21, 319–346. CrossRefGoogle Scholar
  38. Wiggins, S. (2003). Texts in applied mathematics: Vol. 2. Introduction to applied nonlinear dynamical systems and chaos (2nd ed.). New York: Springer. MATHGoogle Scholar

Copyright information

© Society for Mathematical Biology 2011

Authors and Affiliations

  • Elisenda Feliu
    • 1
    • 2
  • Michael Knudsen
    • 2
  • Lars N. Andersen
    • 2
  • Carsten Wiuf
    • 2
  1. 1.Facultat de MatemàtiquesUniversitat de BarcelonaBarcelonaSpain
  2. 2.Bioinformatics Research CentreAarhus UniversityAarhus CDenmark

Personalised recommendations