Advertisement

Bulletin of Mathematical Biology

, Volume 73, Issue 11, pp 2707–2730 | Cite as

Spatiotemporal Model of Barley and Cereal Yellow Dwarf Virus Transmission Dynamics with Seasonality and Plant Competition

  • S. M. Moore
  • C. A. Manore
  • V. A. Bokil
  • E. T. Borer
  • P. R. Hosseini
Original Article

Abstract

Many generalist pathogens are influenced by the spatial distributions and relative abundances of susceptible host species. The spatial structure of host populations can influence patterns of infection incidence (or disease outbreaks), and the effects of a generalist pathogen on host community dynamics in a spatially heterogeneous community may differ from predictions derived via simple models. In this paper, we model the transmission of a generalist pathogen within a patch framework that incorporates the movement of vectors between discrete host patches to investigate the effects of local host community composition and vector movement rates on disease dynamics.

We use barley and cereal yellow dwarf viruses (B/CYDV), a suite of generalist, aphid-vectored pathogens of grasses, and their interactions with a range of host species as our case study. We examine whether B/CYDV can persist locally or in a patch framework across a range of host community configurations. We then determine how pathogen-mediated interactions between perennial and annual competitors are altered at the local and regional scale when the host populations are spatially structured. We find that the spatial configuration of the patch system, host composition within patches, and patch connectivity affect not only the ability of the pathogen to invade a fragmented system, but also determine whether the pathogen facilitates the invasion of a non-native host species. Further, our results suggest that connectivity can interact with arrival time and host infection tolerance to determine the success or failure of establishment for newly arriving species.

Keywords

BYDV Competition Age-structure Patch model Invasion SI model Disease 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allan, B., Langerhans, R., Ryberg, W., Landesman, W., Griffin, N., Katz, R., Oberle, B., Schutzenhofer, M., Smyth, K., de St. Maurice, A., Clark, L., Crooks, K., Hernandez, D., McLean, R., Ostfeld, R., Chase, J. (2009). Ecological correlates of risk and incidence of west Nile virus in the united states. Oecologia, 158(4), 699–708. CrossRefGoogle Scholar
  2. Allan, B. F., Keesing, F., & Ostfeld, R. S. (2003). Effect of forest fragmentation on Lyme disease risk. Conserv. Biol., 17(1), 267–272. CrossRefGoogle Scholar
  3. Arino, J. (2009). Diseases in metapopulations. In: Series in contemporary applied mathematics: Vol. 11, Modeling and dynamics of infectious diseases (pp. 65–123). Google Scholar
  4. Arino, J., Davis, J. R., Hartley, D., Jordan, R., Miller, J. M., & van den Driessche, P. (2005). A multi-species epidemic model with spatial dynamics. Math. Med. Biol., 22(2), 129–142. zbMATHCrossRefGoogle Scholar
  5. Arino, J., & van den Driessche, P. (2006). Disease spread in metapopulations. Fields Inst. Commun., 48, 1–12. Google Scholar
  6. Begon, M., Bowers, R. G., Kadianakis, N., & Hodgkinson, D. E. (1992). Disease and community structure: the importance of host self-regulation in a host-host-pathogen model. Am. Nat., 139(6), 1131–1150. CrossRefGoogle Scholar
  7. Borer, E. T., Adams, V. T., Engler, G. A., Adams, A. L., Schumann, C. B., & Seabloom, E. W. (2009). Aphid fecundity and grassland invasion: invader life history is the key. Ecol. Appl., 19(5), 1187–1196. CrossRefGoogle Scholar
  8. Borer, E. T., Hosseini, P. R., Seabloom, E. W., & Dobson, A. P. (2007). Pathogen-induced reversal of native dominance in a grassland community. Proc. Natl. Acad. Sci. USA, 104(13), 5473. CrossRefGoogle Scholar
  9. Bowers, R. G., & Turner, J. (1997). Community structure and the interplay between interspecific infection and competition. J. Theor. Biol., 187(1), 95–109. CrossRefGoogle Scholar
  10. Brownstein, J. S., Skelly, D. K., Holford, T. R., & Fish, D. (2005). Forest fragmentation predicts local scale heterogeneity of Lyme disease risk. Oecologia, 146(3), 469–475. CrossRefGoogle Scholar
  11. Buskirk, J. V., & Ostfeld, R. S. (1998). Habitat heterogeneity, dispersal, and local risk of exposure to Lyme disease. Ecol. Appl., 8(2), 365–378. CrossRefGoogle Scholar
  12. Case, T. J. (1990). Invasion resistance arises in strongly interacting species-rich model competition communities. Proc. Natl. Acad. Sci. USA, 87(24), 9610. zbMATHCrossRefGoogle Scholar
  13. Chase, J. M., Abrams, P. A., Grover, J. P., Diehl, S., Chesson, P., Holt, R. D., Richards, S. A., Nisbet, R. M., & Case, T. J. (2002). The interaction between predation and competition: a review and synthesis. Ecol. Lett., 5(2), 302–315. CrossRefGoogle Scholar
  14. Chitnis, N., Hyman, J. M., & Cushing, J. M. (2008). Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model. Bull. Math. Biol., 70(5), 1272–1296. MathSciNetzbMATHCrossRefGoogle Scholar
  15. Condeso, T. E., & Meentemeyer, R. K. (2007). Effects of landscape heterogeneity on the emerging forest disease sudden oak death. Ecology, 95, 364–375. CrossRefGoogle Scholar
  16. Cronin, J. P., Welsh, M. E., Dekkers, M. G., Abercrombie, S. T., & Mitchell, C. E. (2010). Host physiological phenotype explains pathogen reservoir potential. Ecol. Lett., 13(10), 1221–1232. CrossRefGoogle Scholar
  17. de Castro, F., & Bolker, B. (2005). Mechanisms of disease-induced extinction. Ecol. Lett., 8(1), 117–126. CrossRefGoogle Scholar
  18. Dobson, A. (2004). Population dynamics of pathogens with multiple host species. Am. Nat., 164, S65–S78 (supplement). CrossRefGoogle Scholar
  19. Fabre, F., Pierre, J. S., Dedryver, C. A., & Plantegenest, M. (2006). Barley yellow dwarf disease risk assessment based on Bayesian modelling of aphid population dynamics. Ecol. Model., 193(3–4), 457–466. CrossRefGoogle Scholar
  20. Grenfell, B., & Harwood, J. (1997). (Meta) population dynamics of infectious diseases. Trends Ecol. Evol., 12(10), 395–399. CrossRefGoogle Scholar
  21. Hanski, I. (1998). Metapopulation dynamics. Nature, 396(6706), 41–49. CrossRefGoogle Scholar
  22. Hatcher, M. J., Dick, J. T. A., & Dunn, A. M. (2006). How parasites affect interactions between competitors and predators. Ecol. Lett., 9(11), 1253–1271. CrossRefGoogle Scholar
  23. Hess, G. (1996). Disease in metapopulation models: implications for conservation. Ecology, 77(5), 1617–1632. CrossRefGoogle Scholar
  24. Hess, G. R. (1994). Conservation corridors and contagious disease: a cautionary note. Conserv. Biol., 8(1), 256–262. CrossRefGoogle Scholar
  25. Hess, G. R., Randolph, S. E., Arneberg, P., Chemini, C., Furlanello, C., Harwood, J., Roberts, M. G., & Swinton, J. (2002). Spatial aspects of disease dynamics. In The ecology of wildlife diseases (pp. 102–118). Oxford: Oxford University Press. Google Scholar
  26. Holmes, E. E. (1997). Basic epidemiological concepts in a spatial context. In Spatial ecology: the role of space in population dynamics and interspecific interactions (pp. 111–136). Google Scholar
  27. Holt, R. D., Dobson, A. P., Begon, M., Bowers, R. G., & Schauber, E. (2003). Parasite establishment and persistence in multi-host-species systems. Ecol. Lett., 6, 837–842. CrossRefGoogle Scholar
  28. Holt, R. D., & Dobson, A. P. (2006). Disease ecology: community structure and pathogen dynamics. In Extending the principles of community ecology to address the epidemiology of host-pathogen systems. Google Scholar
  29. Holt, R. D., & Pickering, J. (1985). Infectious disease and species coexistence: a model of Lotka-Volterra form. Am. Nat., 126(2), 196–211. CrossRefGoogle Scholar
  30. Irwin, M. E., & Thresh, J. M. (1990). Epidemiology of barley yellow dwarf: a study in ecological complexity. Annu. Rev. Phytopathol., 28(1), 393–424. CrossRefGoogle Scholar
  31. Irwin, M. E., Thresh, J. M., & Harrison, B. D. (1988). Long-range aerial dispersal of cereal aphids as virus vectors in North America (and Discussion). Philos. Trans. R. Soc. Lond. B, Biol. Sci., 321(1207), 421–446. CrossRefGoogle Scholar
  32. Jeger, M. J., Pautasso, M., Holdenrieder, O., & Shaw, M. W. (2007). Modelling disease spread and control in networks: implications for plant sciences. New Phytol., 174(2), 279–297. CrossRefGoogle Scholar
  33. Keeling, M. J., Bjornstad, O. N., & Grenfell, B. T. (2004). Metapopulation dynamics of infectious diseases. In Ecology, evolution and genetics of metapopulations (pp. 415–446). Amsterdam: Elsevier. CrossRefGoogle Scholar
  34. Keeling, M. J., Woolhouse, M. E. J., Shaw, D. J., Matthews, L., Chase-Topping, M., Haydon, D. T., Cornell, S. J., Kappey, J., Wilesmith, J., & Grenfell, B. T. (2001). Dynamics of the 2001 UK foot and mouth epidemic: stochastic dispersal in a heterogeneous landscape. Science, 294(5543), 813. CrossRefGoogle Scholar
  35. Keesing, F., Holt, R. D., & Ostfeld, R. S. (2006). Effects of species diversity on disease risk. Ecol. Lett., 9(4), 485–498. CrossRefGoogle Scholar
  36. Kendall, D. A., Brain, P., & Chinn, N. E. (1992). A simulation model of the epidemiology of barley yellow dwarf virus in winter sown cereals and its application to forecasting. J. Appl. Ecol., 29(2), 414–426. CrossRefGoogle Scholar
  37. Knops, J. M. H., Tilman, D., Haddad, N. M., Naeem, S., Mitchell, C. E., Haarstad, J., Ritchie, M. E., Howe, K. M., Reich, P. B., Siemann, E., et al. (1999). Effects of plant species richness on invasion dynamics, disease outbreaks, insect abundances and diversity. Ecol. Lett., 2(5), 286–293. CrossRefGoogle Scholar
  38. Langlois, J. P., Fahrig, L., Merriam, G., & Artsob, H. (2001). Landscape structure influences continental distribution of hantavirus in deer mice. Landsc. Ecol., 16(3), 255–266. CrossRefGoogle Scholar
  39. Leclercq-Le Quillec, F., Plantegenest, M., Riault, G., & Dedryver, C. A. (2000). Analyzing and modeling temporal disease progress of barley yellow dwarf virus serotypes in barley fields. Phytopathology, 90(8), 860–866. CrossRefGoogle Scholar
  40. Lowry, E. (2007). The role of aphid host preference in barley yellow dwarf virus epidemiology. Google Scholar
  41. Malmstrom, C. M. (1998). Barley yellow dwarf virus in native California grasses. Grasslands, 8(1), 6–10. Google Scholar
  42. Malmstrom, C. M., Hughes, C. C., Newton, L. A., & Stoner, C. J. (2005a). Virus infection in remnant native bunchgrasses from invaded California grasslands. New Phytol., 168(1), 217–230. CrossRefGoogle Scholar
  43. Malmstrom, C. M., McCullough, A. J., Johnson, H. A., Newton, L. A., & Borer, E. T. (2005b). Invasive annual grasses indirectly increase virus incidence in California native perennial bunchgrasses. Oecologia, 145(1), 153–164. CrossRefGoogle Scholar
  44. McCallum, H., & Dobson, A. (2002). Disease, habitat fragmentation and conservation. Proc., Biol. Sci., 269(1504), 2041–2049. CrossRefGoogle Scholar
  45. McCormack, R. K. (2006). Multi-host multi-patch mathematical epidemic models for disease emergence with applications to hantavirus in wild rodents. PhD thesis, Texas Tech University. Google Scholar
  46. McCormack, R. K., & Allen, L. J. S. (2007). Disease emergence in multi-host epidemic models. Math. Med. Biol., 24(1), 17. MathSciNetzbMATHCrossRefGoogle Scholar
  47. McElhany, P., Real, L. A., & Power, A. G. (1995). Vector preference and disease dynamics: a study of barley yellow dwarf virus. Ecology, 76(2), 444–457. CrossRefGoogle Scholar
  48. Meentemeyer, R. K., Rank, N. E., Anacker, B. L., Rizzo, D. M., & Cushman, J. H. (2008). Influence of land-cover change on the spread of an invasive forest pathogen. Ecol. Appl., 18(1), 159–171. CrossRefGoogle Scholar
  49. Mitchell, C. E., Tilman, D., & Groth, J. V. (2002). Effects of grassland plant species diversity, abundance, and composition on foliar fungal disease. Ecology, 83(6), 1713–1726. CrossRefGoogle Scholar
  50. Ostfeld, R., Keesing, F., & Eviner, V. T. (2008). Infectious disease ecology: the effects of ecosystems on disease and of disease on ecosystems. Princeton: Princeton University Press. Google Scholar
  51. Ostfeld, R. S., Glass, G. E., & Keesing, F. (2005). Spatial epidemiology: an emerging (or re-emerging) discipline. Trends Ecol. Evol., 20(6), 328–336. CrossRefGoogle Scholar
  52. Plantegenest, M., Le May, C., & Fabre, F. (2007). Landscape epidemiology of plant diseases. J. R. Soc. Interface, 4(16), 963. CrossRefGoogle Scholar
  53. Power, A. G., & Mitchell, C. E. (2004). Pathogen spillover in disease epidemics. Am. Nat., 164, S79–S89 (supplement). CrossRefGoogle Scholar
  54. Rushton, S. P., Lurz, P. W. W., Gurnell, J., & Fuller, R. (2000). Modelling the spatial dynamics of parapoxvirus disease in red and grey squirrels: a possible cause of the decline in the red squirrel in the UK? J. Appl. Ecol. (pp. 997–1012). Google Scholar
  55. Saltelli, A., Chan, K., Scott, E. M. et al. (2004). Sensitivity analysis. New York: Wiley. zbMATHGoogle Scholar
  56. Saramäki, J., & Kaski, K. (2005). Modelling development of epidemics with dynamic small-world networks. J. Theor. Biol., 234(3), 413–421. CrossRefGoogle Scholar
  57. Seabloom, E. W., Harpole, W. S., Reichman, O. J., & Tilman, D. (2003). Invasion, competitive dominance, and resource use by exotic and native California grassland species. Proc. Natl. Acad. Sci. USA, 100(23), 13384. CrossRefGoogle Scholar
  58. Seabloom, E. W., Hosseini, P. R., Power, A. G., & Borer, E. T. (2009). Diversity and composition of viral communities: coinfection of barley and cereal yellow dwarf viruses in California Grasslands. Am. Nat., 173, E79–E98. CrossRefGoogle Scholar
  59. Smith, D. L., Lucey, B., Waller, L. A., Childs, J. E., & Real, L. A. (2002). Predicting the spatial dynamics of rabies epidemics on heterogeneous landscapes. Proc. Natl. Acad. Sci. USA, 99(6), 3668–3672. CrossRefGoogle Scholar
  60. Tompkins, D. M., White, A. R., & Boots, M. (2003). Ecological replacement of native red squirrels by invasive greys driven by disease. Ecol. Lett., 6(3), 189–196. CrossRefGoogle Scholar
  61. van den Driessche, P., & Watmough, J. (2002). Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci., 180(1), 29–48. MathSciNetzbMATHCrossRefGoogle Scholar
  62. Zhang, X. S., & Holt, J. (2001). Mathematical models of cross protection in the epidemiology of plant-virus diseases. Phytopathology, 91(10), 924–934. CrossRefGoogle Scholar

Copyright information

© Society for Mathematical Biology 2011

Authors and Affiliations

  • S. M. Moore
    • 1
  • C. A. Manore
    • 2
  • V. A. Bokil
    • 2
  • E. T. Borer
    • 3
  • P. R. Hosseini
    • 4
  1. 1.Department of ZoologyOregon State UniversityCorvallisUSA
  2. 2.Department of MathematicsOregon State UniversityCorvallisUSA
  3. 3.Department of Ecology, Evolution, and BehaviorUniversity of MinnesotaSt PaulUSA
  4. 4.EcoHealth Alliance (formerly Wildlife Trust)New YorkUSA

Personalised recommendations