Bulletin of Mathematical Biology

, Volume 73, Issue 11, pp 2731–2747 | Cite as

From Blood Oxygenation Level Dependent (BOLD) Signals to Brain Temperature Maps

  • Roberto C. Sotero
  • Yasser Iturria-Medina
Original Article


A theoretical framework is presented for converting Blood Oxygenation Level Dependent (BOLD) images to brain temperature maps, based on the idea that disproportional local changes in cerebral blood flow (CBF) as compared with cerebral metabolic rate of oxygen consumption (CMRO 2) during functional brain activity, lead to both brain temperature changes and the BOLD effect. Using an oxygen limitation model and a BOLD signal model, we obtain a transcendental equation relating CBF and CMRO 2 changes with the corresponding BOLD signal, which is solved in terms of the Lambert W function. Inserting this result in the dynamic bioheat equation describing the rate of temperature changes in the brain, we obtain a nonautonomous ordinary differential equation that depends on the BOLD response, which is solved numerically for each brain voxel. Temperature maps obtained from a real BOLD dataset registered in an attention to visual motion experiment were calculated, obtaining temperature variations in the range: (−0.15, 0.1) which is consistent with experimental results. The statistical analysis revealed that significant temperature activations have a similar distribution pattern than BOLD activations. An interesting difference was the activation of the precuneus in temperature maps, a region involved in visuospatial processing, an effect that was not observed on BOLD maps. Furthermore, temperature maps were more localized to gray matter regions than the original BOLD maps, showing less activated voxels in white matter and cerebrospinal fluid.


BOLD signal Brain temperature Cerebral blood flow Oxygen consumption Lambert W function 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abeles, M. (1991). Corticonics: neural circuits of the cerebral cortex. Cambridge: Cambridge University Press. CrossRefGoogle Scholar
  2. Attwell, D., & Iadecola, C. (2002). The neural basis of functional brain imaging signals. Trends Neurosci., 25, 621–625. CrossRefGoogle Scholar
  3. Babajani, A., & Soltanian-Zadeh, H. (2006). Integrated MEG/EEG and fMRI model based on neural masses. IEEE Trans. Biomed. Eng., 53, 1794–1801. CrossRefGoogle Scholar
  4. Babajani, A., Soltanian-Zadeh, H., & Moran, J. E. (2008). Integrated MEG/fMRI model validated using real auditory data. Brain Topogr., 21, 61–74. CrossRefGoogle Scholar
  5. Bandettini, P. A., Wong, E. C., Hinks, R. S., Tikofsky, R. S., & Hyde, J. S. (1992). Time course EPI of human brain function during task activation. Magn. Reson. Med., 25, 390–397. CrossRefGoogle Scholar
  6. Biswal, B., Yetkin, F. Z., Haughton, V. M., & Hyde, J. S. (1995). Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn. Reson. Med., 34, 537–541. CrossRefGoogle Scholar
  7. Blockley, N. P., Francis, S. T., & Gowland, P. A. (2009). Perturbation of the BOLD response by a contrast agent and interpretation through a modified balloon model. NeuroImage, 48, 84–93. CrossRefGoogle Scholar
  8. Büchel, C., & Friston, K. (1997). Modulation of connectivity in visual pathways by attention: cortical interactions evaluated with structural equation modelling and fMRI. Cereb. Cortex, 7, 768–778. CrossRefGoogle Scholar
  9. Buxton, R. B., & Frank, L. R. (1997). A model for the coupling between cerebral blood flow and oxygen metabolism during neural stimulation. J. Cereb. Blood Flow Metab., 17, 64–72. CrossRefGoogle Scholar
  10. Buxton, R. B., Wong, E. C., & Frank, L. R. (1998). Dynamics of blood flow and oxygenation changes during brain activation: the Balloon model. Magn. Reson. Med., 39, 855–864. CrossRefGoogle Scholar
  11. Buxton, R. B., Uludag, K., Dubowitz, D. J., & Liu, T. T. (2004). Modeling the hemodynamic response to brain activation. NeuroImage, 23, S220–S223. CrossRefGoogle Scholar
  12. Cavanna, A. E., & Trimble, M. R. (2006). The precuneus: a review of its functional anatomy and behavioural correlates. Brain, 129, 564–583. CrossRefGoogle Scholar
  13. Chen, W., Zhu, X. H., Gruetter, R., Seaquist, E. R., Adriany, G., & Ugurbil, K. (2001). Study of tricarboxylic acid cycle flux changes in human visual cortex during hemifield visual stimulation using 1H-[13C] MRS and fMRI. Magn. Reson. Med., 45, 34–55. Google Scholar
  14. Chhina, N., Kuestermann, E., Halliday, J., Simpson, L. J., Macdonald, I. A., Bachelard, H. S., & Morris, P. G. (2001). Measurement of human tricarboxylic acid cycle rates during visual activation by 13C magnetic resonance spectroscopy. J. Neurosci. Res., 66, 737–746. CrossRefGoogle Scholar
  15. Collins, C. M., Smith, M. B., & Turner, R. (2004). Model of local temperature changes in brain upon functional activation. J. Appl. Physiol., 97, 2051–2055. CrossRefGoogle Scholar
  16. Corless, R. M., Gonnet, G. H., Hare, D. E. G., Jeffrey, D. J., & Knuth, D. E. (1996). On the Lambert W function. Adv. Comput. Math., 5, 329–359. MathSciNetzbMATHCrossRefGoogle Scholar
  17. Davis, T., Kwong, K., Weisskoff, R., & Rosen, B. (1998). Calibrated functional MRI: mapping the dynamics of oxidative metabolism. Proc. Natl. Acad. Sci. USA, 95, 1834–1839. CrossRefGoogle Scholar
  18. Dunn, A. K., Devor, A., Dale, A. M., & Boas, D. A. (2005). Spatial extent of oxygen metabolism and hemodynamic changes during functional activation of the rat somatosensory cortex. NeuroImage, 27, 279–290. CrossRefGoogle Scholar
  19. Fox, P. T., & Raichle, M. E. (1986). Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects. Proc. Natl. Acad. Sci. USA, 83, 1140–1144. CrossRefGoogle Scholar
  20. Fox, P. T., Raichle, M. E., Mintun, M. A., & Dence, C. (1988). Nonoxidative glucose consumption during focal physiologic neural activity. Science, 241, 462–464. CrossRefGoogle Scholar
  21. Frahm, J., Bruhn, H., Merboldt, K. D., & Hanicke, W. (1992). Dynamic MR imaging of human brain oxygenation during rest and photic stimulation. J. Magn. Reson. Imaging, 2, 501–505. CrossRefGoogle Scholar
  22. Friston, K. J., Mechelli, A., Turner, R., & Price, C. J. (2000). Nonlinear responses in fMRI: the Balloon model, Volterra kernels, and other hemodynamics. NeuroImage, 12, 466–477. CrossRefGoogle Scholar
  23. Friston, K. J., Harrison, L., & Penny, W. (2003). Dynamic causal modeling. NeuroImage, 19, 1273–1302. CrossRefGoogle Scholar
  24. Gorbach, A. M. (1993). Infrared imaging of brain function. Adv. Exp. Med. Biol., 333, 95–123. Google Scholar
  25. Gorbach, A. M., Heiss, J., Kufta, C., Sato, S., Fedio, P., Kammerer, W. A., Solomon, J., & Oldfield, E. H. (2003). Intraoperative infrared functional imaging of human brain. Ann. Neurol., 54, 297–309. CrossRefGoogle Scholar
  26. Gusnard, D. A., & Raichle, M. E. (2001). Searching for a baseline: functional imaging and the resting human brain. Nat. Rev., Neurosci., 2, 685–694. CrossRefGoogle Scholar
  27. Hayward, J. N., & Baker, M. A. (1968). Role of cerebral arterial blood in the regulation of brain temperature in the monkey. Am. J. Physiol., 215, 389–402. Google Scholar
  28. Hindman, J. C. (1966). Proton resonance shift of water in the gas and liquid states. J. Chem. Phys., 44, 4582–4592. CrossRefGoogle Scholar
  29. Hoge, R. D., Atkinson, J., Gill, B., Crelier, G. R., Marrett, S., & Pike, G. B. (1999). Linear coupling between cerebral blood flow and oxygen consumption in activated human cortex. Proc. Natl. Acad. Sci. USA, 96, 9403–9408. CrossRefGoogle Scholar
  30. Hyder, F., Shulman, R. G., & Rothman, D. L. (1998). A model for the regulation of cerebral oxygen delivery. J. Appl. Physiol., 85, 554–564. Google Scholar
  31. Kwong, K. K., Belliveau, J. W., Chesler, D. A., Goldberg, I. E., Weisskoff, R. M., Poncelet, B. P., Kennedy, D. N., Hoppel, B. E., Cohen, M. S., & Turner, R. (1992). Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc. Natl. Acad. Sci. USA, 89, 5675–5679. CrossRefGoogle Scholar
  32. Krüger, G., & Glover, G. H. (2001). Physiological noise in oxygenation-sensitive magnetic resonance imaging. Magn. Reson. Med., 46, 631–637. CrossRefGoogle Scholar
  33. Kuroda, K., Suzuki, Y., Ishihara, Y., & Okamoto, K. (1996). Temperature mapping using water proton chemical shift obtained with 3D-MRSI: feasibility in vivo. Magn. Reson. Med., 35, 20–29. CrossRefGoogle Scholar
  34. LaManna, J. C., McCracken, K. A., Patil, M., & Prohaska, O. J. (1989). Stimulus-activated changes in brain tissue temperature in the anesthetized rat. Metab. Brain Dis., 4, 225–237. CrossRefGoogle Scholar
  35. Le Bihan, D. (Ed.) (1995). Diffusion and perfusion magnetic resonance imaging. New York: Raven Press Ltd. Google Scholar
  36. Leithner, C., Roy, G., Offenhauser, N., Füchtemeier, M., Kohl-Bareis, M., Villringer, A., & Lindauer, U. (2010). Pharmacological uncoupling of activation induced increases in CBF and CMRO2. J. Cereb. Blood Flow Metab., 30, 311–322. CrossRefGoogle Scholar
  37. Lin, A. L., Fox, P. T., Hardies, J., Duong, T. Q., & Gao, J. H. (2010). Nonlinear coupling between cerebral blood flow, oxygen consumption, and ATP production in human visual cortex. Proc. Natl. Acad. Sci. USA, 107, 8446–8451. CrossRefGoogle Scholar
  38. Madsen, P. L., Hasselbalch, S. G., Hagemann, L. P., Olsen, K. S., Bulow, J., Holm, S., Wildschiodtz, G., Paulson, O. B., & Lassen, N. A. (1995). Persistent resetting of the cerebral oxygen/glucose uptake ratio by brain activation: evidence obtained with the Kety–Schmidt technique. J. Cereb. Blood Flow Metab., 15, 485–91. CrossRefGoogle Scholar
  39. Marrett, S., Fujita, H., Meyer, E., Ribeiro, L., Evans, A., Kuwabara, H., & Gjedde, A. (1993). Stimulus specific increase of oxidative metabolism in human visual cortex (pp. 217–224). Amsterdam: Elsevier. Google Scholar
  40. McElligott, J. G., & Melzack, R. (1967). Localized thermal changes evoked in the brain by visual and auditory stimulation. Exp. Neurol., 17, 293–312. CrossRefGoogle Scholar
  41. Melzack, R., & Casey, K. L. (1967). Localized temperature changes evoked in the brain by somatic stimulation. Exp. Neurol., 17, 276–292. CrossRefGoogle Scholar
  42. Newberg, A. B., Wang, J., Rao, H., Swanson, R. L., Wintering, N., Karp, J. S., Alavi, A., Greenberg, J. H., & Detre, J. A. (2005). Concurrent CBF and CMRGlc changes during human brain activation by combined fMRI–PET scanning. NeuroImage, 28, 500–506. CrossRefGoogle Scholar
  43. Ogawa, S., Tank, D. W., Menon, R., Ellermann, J. M., Kim, S., Merkle, H., & Ugurbil, K. (1992). Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc. Natl. Acad. Sci. USA, 89, 5951–5955. CrossRefGoogle Scholar
  44. Parker, D. L., Smith, V., Sheldon, P., Crooks, L., & Fussel, L. (1983). Temperature distribution measurements in two-dimensional NMR imaging. Med. Phys., 10, 321–325. CrossRefGoogle Scholar
  45. Pennes, H. H. (1948). Analysis of tissue and arterial blood temperature in the resting human forearm. J. Appl. Physiol., 1, 93–122. Google Scholar
  46. Reis, D. J., & Golanov, E. V. (1997). Autonomic and vasomotor regulation. Int. Rev. Neurobiol., 41, 121–149. CrossRefGoogle Scholar
  47. Ribeiro, L., Kuwabara, H., Meyer, E., Fujita, H., Marrett, S., Evans, A., & Gjedde, A. (1993). In K. Uemura, N. Lassen, T. Jones, & I. Kanno (Eds.), Quantification of brain function (pp. 229–236). Amsterdam: Elsevier. Google Scholar
  48. Riera, J., Wan, X., Jimenez, J. C., & Kawashima, R. (2006). Nonlinear local electro-vascular coupling. Part I: a theoretical model. Hum. Brain Mapp., 27, 896–914. CrossRefGoogle Scholar
  49. Riera, J., Jimenez, J. C., Wan, X., Kawashima, R., & Ozaki, T. (2007). Nonlinear local electro-vascular coupling. Part II: from data to neuronal masses. Hum. Brain Mapp., 28, 335–354. CrossRefGoogle Scholar
  50. Seitz, R. J., & Roland, P. E. (1992). Vibratory stimulation increases and decreases the regional cerebral blood flow and oxidative metabolism: a positron emission tomography (PET) study. Acta Neural. Scand., 86, 60–67. CrossRefGoogle Scholar
  51. Serota, H. M., & Gerard, R. W. (1938). Localized thermal changes in the cats brain. J. Neurophysiol., 1, 115–24. Google Scholar
  52. Shevelev, I. A. (1998). Functional imaging of the brain by infrared radiation (thermoencephaloscopy). Prog. Neurobiol., 56, 269–305. CrossRefGoogle Scholar
  53. Shevelev, I. A., Tsicalov, E. N., Gorbach, A. M., Budko, K. P., & Sharaev, G. A. (1993). Thermoimaging of the brain. J. Neurosci. Methods, 46, 49–57. CrossRefGoogle Scholar
  54. Shevelev, I. A., & Tsicalov, E. N. (1997). Fast thermal waves spreading over the cerebral cortex. Neuroscience, 76, 531–540. CrossRefGoogle Scholar
  55. Shitzer, A., Stroschein, L. A., Gonzalez, R. R., & Pandol, K. B. (1996). Lumped-parameter tissue temperature-blood perfusion model of a cold-stressed fingertip. J. Appl. Physiol., 80, 1829–1834. Google Scholar
  56. Shmuel, A., Yacoub, E., Pfeuffer, J., Van de Moortele, P., Adriany, G., Hu, X., & Ugurbil, K. (2002). Sustained negative BOLD, blood flow and oxygen consumption response and its coupling to the positive response in the human brain. Neuron, 36, 1195–1210. CrossRefGoogle Scholar
  57. Sotero, R. C., & Trujillo-Barreto, N. J. (2007). Modelling the role of excitatory and inhibitory neuronal activity in the generation of the BOLD signal. NeuroImage, 35, 149–165. CrossRefGoogle Scholar
  58. Sukstanskii, A., & Yablonskiy, D. A. (2006). Theoretical model of temperature regulation in the brain during changes in functional activity. PNAS, 103, 12144–12149. CrossRefGoogle Scholar
  59. Takuya, H., Watabe, H., Kudomi, N., Kim, K. M., Enmi, J. I., Hayashida, K., & Iida, H. (2003). A theoretical model of oxygen delivery and metabolism for physiological interpretation of quantitative cerebral blood flow and metabolic rate of oxygen. J. Cereb. Blood Flow Metab., 23, 1314–1323. Google Scholar
  60. Trübel, H. K. F., Sacolick, L. I., & Hyder, F. (2006). Regional temperature changes in the brain during somatosensory stimulation. J. Cereb. Blood Flow Metab., 26, 68–78. CrossRefGoogle Scholar
  61. Vafaee, M. S., & Gjedde, A. (2000). Model of blood-brain transfer of oxygen explains nonlinear flow- metabolism coupling during stimulation of visual cortex. J. Cereb. Blood Flow Metab., 20, 747–754. CrossRefGoogle Scholar
  62. Weber, B., Keller, A. L., Reichold, J., & Logothetis, N. (2008). The microvascular system of the striate and extrastriate visual cortex of the macaque. Cereb. Cortex, 18, 2318–2330. CrossRefGoogle Scholar
  63. Yablonskiy, D. A., Ackerman, J. J. H., & Raichle, M. E. (2000). Coupling between changes in human brain temperature and oxidative metabolism during prolonged visual stimulation. PNAS, 97, 7603–7608. CrossRefGoogle Scholar
  64. Zheng, Y., Martindale, J., Johnston, D., Jones, M., Berwick, J., & Mayhew, J. (2002). A model of the hemodynamic response and oxygen delivery to brain. NeuroImage, 16, 617–637. CrossRefGoogle Scholar

Copyright information

© Society for Mathematical Biology 2011

Authors and Affiliations

  1. 1.National Bioinformatics Center (BIOINFO), InSTECHavanaCuba
  2. 2.Montreal Neurological Institute, Brain Imaging Centre, Depts. of Neurology and Neurosurgery and Biomedical EngineeringMcGill UniversityMontrealCanada
  3. 3.Cuban Neuroscience CenterHavanaCuba

Personalised recommendations