Advertisement

Bulletin of Mathematical Biology

, Volume 73, Issue 11, pp 2678–2706 | Cite as

Autonomous Synchronization of Chemically Coupled Synthetic Oscillators

  • Moritz LangEmail author
  • Tatiana T. Marquez-LagoEmail author
  • Jörg Stelling
  • Steffen Waldherr
Original Article

Abstract

Synthetic biology has recently provided functional single-cell oscillators. With a few exceptions, however, synchronization across a population has not been achieved yet. In particular, designing a cell coupling mechanism to achieve autonomous synchronization is not straightforward since there are usually several different design alternatives. Here, we propose a method to mathematically predict autonomous synchronization properties, and to identify the network structure with the best performance, thus increasing the feasibility for a successful implementation in vivo.

Our method relies on the reduction of ODE-based models for synthetic oscillators to a phase description, and the subsequent analysis of the phase model either in the spatially homogeneous or heterogeneous case. This analysis identifies three major factors determining if and when autonomous synchronization can be achieved, namely cell density, cell to cell variability, and structural design decisions. Moreover, when considering a spatially heterogeneous medium, we observe phase waves. These waves may hinder synchronization substantially, and their suppression should be considered in the design process.

In contrast to previous work, we analyze the synchronization process of models of experimentally validated synthetic oscillators in mammalian cells. Alternative designs for cell-to-cell communication via a quorum sensing mechanism differ in few mechanistic details, but these differences have important implications for autonomous synchronization. Our analysis suggests that not only the periodical transcription of the protein producing the signaling molecule, but also of the receptor protein is necessary to achieve good performance.

Keywords

Synchronization Synthetic oscillators Kuramoto analysis Spatial waves 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11538_2011_9642_MOESM1_ESM.pdf (2.6 mb)
(PDF 2.626 kB)

AHL During Synchronization (MOV 14.525 kB)

Phases During Synchronization (MOV 3.338 kB)

References

  1. Acheson, D. J. (1990). Elementary fluid dynamics. London: Oxford University Press. zbMATHGoogle Scholar
  2. Atkinson, M. R., Savageau, M. A., Myers, J. T., & Ninfa, A. J. (2003). Development of genetic circuitry exhibiting toggle switch or oscillatory behavior in Escherichia coli. Cell, 113, 597–607. CrossRefGoogle Scholar
  3. Brown, E., Moehlis, J., & Holmes, P. (2004). On the phase reduction and response dynamics of neural oscillator populations. Neural Comput., 16, 673–715. zbMATHCrossRefGoogle Scholar
  4. Daniels, B. C. (2005). Synchronization of globally coupled nonlinear oscillators: the rich behavior of the Kuramoto model. Technical report, Ohio Wesleyan University. Google Scholar
  5. Danino, T., Mondragon-Palomino, O., Tsimring, L., & Hasty, J. (2010). A synchronized quorum of genetic clocks. Nature, 463, 326–330. CrossRefGoogle Scholar
  6. Elowitz, M. B., & Leibler, S. (2000). A synthetic oscillatory network of transcriptional regulators. Nature, 403, 335–338. CrossRefGoogle Scholar
  7. Ferziger, J. H., & Peric, M. (1999). Computational methods for fluid dynamics (2nd ed.). Berlin: Springer. zbMATHGoogle Scholar
  8. Fung, E., Wong, W. W., Suen, J. K., Bulter, T., Lee, S., & Liao, J. C. (2008). A synthetic gene-metabolic oscillator. Nature, 435, 118–122. CrossRefGoogle Scholar
  9. Garcia-Ojalvo, J., Elowitz, M. B., & Strogatz, S. H. (2004). Modeling a synthetic multicellular clock: repressilators coupled by quorum sensing. Proc. Natl. Acad. Sci., 101(30), 10955–10960. MathSciNetzbMATHCrossRefGoogle Scholar
  10. Gonze, D., Bernard, S., Waltermann, C., Kramer, A., & Herzel, H. (2005). Spontaneous synchronization of coupled circadian oscillators. Biophys. J., 89, 120–129. CrossRefGoogle Scholar
  11. Goryachev, A. B., Toh, D. J., & Lee, T. (2006). Systems analysis of a quorum sensing network: design constraints imposed by the functional requirements, network topology and kinetic constants. Biosystems, 83, 178–187. CrossRefGoogle Scholar
  12. Koseska, A., Volkov, E., Zaikin, A., & Kurths, J. (2007a). Inherent multistability in arrays of autoinducer coupled genetic oscillators. Phys. Rev. E, 75, 031916–1–031916–8. Google Scholar
  13. Koseska, A., Zaikin, A., Garcia-Ojalvo, J., & Kurths, J. (2007b). Stochastic suppression of gene expression oscillators under intercell coupling. Phys. Rev. E, 75, 031917–1–031917–9. Google Scholar
  14. Kuramoto, Y. (1984). Chemical oscillations, waves and turbulence. Berlin: Springer. zbMATHCrossRefGoogle Scholar
  15. Kuramoto, Y., & Nishikawa, I. (1987). Statistical macrodynamics of large dynamical systems. Case of a phase transition in oscillator communities. J. Stat. Phys., 49, 569–605. MathSciNetzbMATHCrossRefGoogle Scholar
  16. Kuznetsov, A., Kaern, M., & Kopell, N. (2004). Synchrony in a population of hysteresis-based genetic oscillators. SIAM J. Appl. Math., 65(2), 392–425. MathSciNetzbMATHCrossRefGoogle Scholar
  17. Li, C., Chen, L., & Aihara, K. (2007). Stochastic synchronization of genetic oscillator networks. BMC Systems Biology, 1(6). Google Scholar
  18. Locke, J. C. W., Westermark, P. O., Kramer, A., & Herzel, H. (2008). Global parameter search reveals design principles of the mammalian circadian clock. BMC Systems Biology, 2(22). Google Scholar
  19. McMillen, D., Kopell, N., Hasty, J., & Collins, J. J. (2002). Synchronizing genetic relaxation oscillators by intercell signaling. Proc. Natl. Acad. Sci., 99(2), 679–684. CrossRefGoogle Scholar
  20. Misra, J. C., & Mitra, A. (2008). Synchronization among tumour-like cell aggregations coupled by quorum sensing: a theoretical study. Comput. Math. Appl., 55, 1842–1853. MathSciNetzbMATHCrossRefGoogle Scholar
  21. Müller, J., Kuttler, C., Hense, B. A., Rothballer, M., & Hartmann, A. (2006). Cell–cell communication by quorum sensing and dimension-reduction. J. Math. Biol., 53, 672–702. MathSciNetzbMATHCrossRefGoogle Scholar
  22. Patankar, S. V., & Spalding, D. B. (1971). A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows. Int. J. Heat Mass Transf., 15, 1787–1806. CrossRefGoogle Scholar
  23. Preitner, N., Damiola, F., Lopez-Molina, L., Zakany, J., Duboule, D., Albrecht, U., & Schibler, U. (2002). The orphan nuclear receptor REV-ERBα controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell, 110, 251–260. CrossRefGoogle Scholar
  24. Rosenblum, M., Pikovsky, A., Kurths, J., Schafer, C., & Tass, P. A. (2001). Handbook of biological physics (Vol. 4, pp. 279–321). Amsterdam: Elsevier. Chapter 9. Google Scholar
  25. Russo, G., & di Bernardo, M. (2009). How to synchronize biological clocks. J. Comput. Biol., 16(2), 379–393. MathSciNetCrossRefGoogle Scholar
  26. Sewell, G. (2005). The numerical solution of ordinary and partial differential equations. New York: Wiley. zbMATHCrossRefGoogle Scholar
  27. Shiner, E., Reddy, S., Timmons, C., Guigen, L., Williams, S., & Rumbaugh, K. (2004). Construction of a bacterial autoinducer detection system in mammalian cells. Biol. Proced. Online, 6(1), 268–276. CrossRefGoogle Scholar
  28. Stricker, J., Cookson, S., Bennett, M. R., Mather, W. H., Tsimring, L. S., & Hasty, J. (2008). A fast, robust and tunable synthetic gene oscillator. Nature, 456, 516–520. CrossRefGoogle Scholar
  29. Strogatz, S. H. (2000). From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators. Physica D, 143, 1–20. MathSciNetzbMATHCrossRefGoogle Scholar
  30. Taylor, A. F., Tinsley, M. R., Wang, F., Huang, Z., & Showalter, K. (2009). Dynamical quorum sensing and synchronization in large populations of chemical oscillators. Science, 323, 614–617. CrossRefGoogle Scholar
  31. Tigges, M., Marquez-Lago, T. T., Stelling, J., & Fussenegger, M. (2009). A tunable synthetic mammalian oscillator. Nature, 457, 309–312. CrossRefGoogle Scholar
  32. Wang, W., & Slotine, J. J. (2005). On partial contraction analysis for coupled nonlinear oscillators. Biol. Cybern., 92(1), 38–53. MathSciNetzbMATHCrossRefGoogle Scholar
  33. Waters, C. M., & Bassler, B. L. (2005). Quorum sensing: cell-to-cell communication in bacteria. Annu. Rev. Cell Dev. Biol., 21, 319–346. CrossRefGoogle Scholar
  34. Winfree, A. T. (1967). Biological rhythms and the behavior of populations of coupled oscillators. J. Theor. Biol., 16, 15–42. CrossRefGoogle Scholar
  35. Zhou, T., Zhang, J., Yuan, Z., & Chen, L. (2008). Synchronization of genetic oscillators. Chaos, 18, 037126-1–037126-20. MathSciNetGoogle Scholar

Copyright information

© Society for Mathematical Biology 2011

Authors and Affiliations

  1. 1.Department of Biosystems Science and Engineering, and Swiss Institute of BioinformaticsETH ZürichBaselSwitzerland
  2. 2.Institute for Systems Theory and Automatic ControlUniversity of StuttgartStuttgartGermany

Personalised recommendations