Bulletin of Mathematical Biology

, Volume 73, Issue 11, pp 2605–2626 | Cite as

Adaptive Dynamics of Altruistic Cooperation in a Metapopulation: Evolutionary Emergence of Cooperators and Defectors or Evolutionary Suicide?

Original Article


We investigate the evolution of public goods cooperation in a metapopulation model with small local populations, where altruistic cooperation can evolve due to assortment and kin selection, and the evolutionary emergence of cooperators and defectors via evolutionary branching is possible. Although evolutionary branching of cooperation has recently been demonstrated in the continuous snowdrift game and in another model of public goods cooperation, the required conditions on the cost and benefit functions are rather restrictive, e.g., altruistic cooperation cannot evolve in a defector population. We also observe selection for too low cooperation, such that the whole metapopulation goes extinct and evolutionary suicide occurs. We observed intuitive effects of various parameters on the numerical value of the monomorphic singular strategy. Their effect on the final coexisting cooperator–defector pair is more complex: changes expected to increase cooperation decrease the strategy value of the cooperator. However, at the same time the population size of the cooperator increases enough such that the average strategy does increase. We also extend the theory of structured metapopulation models by presenting a method to calculate the fitness gradient in a general class of metapopulation models, and try to make a connection with the kin selection approach.


Adaptive dynamics Altruism Cooperation Kin selection Evolutionary suicide 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alizon, S., & Taylor, P. (2008). Empty sites can promote altruistic behavior. Evolution, 62, 1335–1344. CrossRefGoogle Scholar
  2. Allee, W. C., Emerson, A., Park, T., & Schmidt, K. (1949). Principles of animal ecology. Philadelphia: Saunders. Google Scholar
  3. Brännström, Å., & Dieckmann, U. (2005). Evolutionary dynamics of altruism and cheating among social amoebas. Proc. R. Soc. Lond. B, 272, 1609–1616. CrossRefGoogle Scholar
  4. Doebeli, M., Hauert, C., & Killingback, T. (2004). The evolutionary origin of cooperators and defectors. Science, 306, 859–862. CrossRefGoogle Scholar
  5. Doebeli, M., & Ruxton, G. D. (1997). Evolution of dispersal rates in metapopulation models: branching and cyclic dynamics in phenotype space. Evolution, 51, 1730–1741. CrossRefGoogle Scholar
  6. Eshel, I. (1983). Evolutionary and continuous stability. J. Theor. Biol., 103, 99–111. MathSciNetCrossRefGoogle Scholar
  7. Faddeev, D. K., & Faddeeva, V. N. (1963). Computational methods of linear algebra. San Francisco: Freeman. Google Scholar
  8. Ferrière, R. (2000). Adaptive responses to environmental threats: evolutionary suicide, insurance, and rescue. In Options, Spring 2000 (pp. 12–16). Laxenburg: IIASA. Google Scholar
  9. Geritz, S. A. H., Kisdi, É., Meszéna, G., & Metz, J. A. J. (1998). Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree. Evol. Ecol., 12, 35–57. CrossRefGoogle Scholar
  10. Geritz, S. A. H., Metz, J. A. J., Kisdi, É., & Meszéna, G. (1997). Dynamics of adaptation and evolutionary branching. Phys. Rev. Lett., 78, 2024–2027. CrossRefGoogle Scholar
  11. Geritz, S. A. H., van der Meijden, E., & Metz, J. A. J. (1999). Evolutionary dynamics of seed size and seedling competitive ability. Theor. Popul. Biol., 55, 324–343. MATHCrossRefGoogle Scholar
  12. Grafen, A. (1985). A geometric view of relatedness. Oxf. Surv. Evol. Biol., 2, 28–89. Google Scholar
  13. Griffin, A., West, S., & Buckling, A. (2004). Cooperation and competition in pathogenic bacteria. Nature, 430, 1024–1027. CrossRefGoogle Scholar
  14. Gyllenberg, M., & Metz, J. A. J. (2001). On fitness in structured metapopulations. J. Math. Biol., 43, 545–560. MathSciNetMATHCrossRefGoogle Scholar
  15. Gyllenberg, M., & Parvinen, K. (2001). Necessary and sufficient conditions for evolutionary suicide. Bull. Math. Biol., 63, 981–993. CrossRefGoogle Scholar
  16. Gyllenberg, M., Parvinen, K., & Dieckmann, U. (2002). Evolutionary suicide and evolution of dispersal in structured metapopulations. J. Math. Biol., 45, 79–105. MathSciNetMATHCrossRefGoogle Scholar
  17. Hamilton, W. D. (1964a). The genetical evolution of social behaviour i. J. Theor. Biol., 7, 1–16. CrossRefGoogle Scholar
  18. Hamilton, W. D. (1964b). The genetical evolution of social behaviour ii. J. Theor. Biol., 7, 17–52. CrossRefGoogle Scholar
  19. Hardin, G. (1968). The tragedy of the commons. Science, 162, 1243–1248. CrossRefGoogle Scholar
  20. Harrison, F., & Buckling, A. (2009). Cooperative production of siderophores by Pseudomonas aeruginosa. Front. Biosci., 14, 4113–4126. CrossRefGoogle Scholar
  21. Hauert, C. (2006). Cooperation, collectives formation and specialization. Adv. Complex Syst., 9, 315–335. MATHCrossRefGoogle Scholar
  22. Hauert, C., Holmes, M., & Doebeli, M. (2006). Evolutionary games and population dynamics: maintenance of cooperation in public goods games. Proc. R. Soc. Lond. B, 273, 2565–2570. CrossRefGoogle Scholar
  23. Hauert, C., Traulsen, A., Brandt, H., Nowak, M. A., & Sigmund, K. (2007). Via freedom to coercion: the emergence of costly punishment. Science, 316, 1905–1907. MathSciNetCrossRefGoogle Scholar
  24. Jansen, V. A. A., & van Baalen, M. (2006). Altruism through beard chromodynamics. Nature, 440, 663–666. CrossRefGoogle Scholar
  25. Kemeny, J. G., & Snell, J. (1960). Finite Markov chains. Princeton: Van Nostrand. MATHGoogle Scholar
  26. Kuemmerli, R., Griffin, A. S., West, S. A., Buckling, A., & Harrison, F. (2009). Viscous medium promotes cooperation in the pathogenic bacterium Pseudomonas aeruginosa. Proc. R. Soc. Lond. B, 276, 3531–3538. CrossRefGoogle Scholar
  27. Le Galliard, J.-F., Ferriére, R., & Dieckmann, U. (2003). The adaptive dynamics of altruism in spatially heterogeneous populations. Evolution, 57, 1–17. Google Scholar
  28. Levins, R. (1969). Some demographic and genetic consequenses of environmental heterogeneity for biological control. Bull. Entomol. Soc. Am., 15, 237–240. Google Scholar
  29. Levins, R. (1970). Extinction. In M. Gerstenhaber (Ed.), Some mathematical problems in biology (pp. 77–107). Providence: American Mathematical Society. Google Scholar
  30. Mathias, A., Kisdi, É., & Olivieri, I. (2001). Divergent evolution of dispersal in a heterogeneous landscape. Evolution, 55, 246–259. Google Scholar
  31. Matsuda, H. (1985). Evolutionarily stable strategies for predator switching. J. Theor. Biol., 115, 351–366. MathSciNetCrossRefGoogle Scholar
  32. Matsuda, H., & Abrams, P. A. (1994). Timid consumers: self-extinction due to adaptive change in foraging and anti-predator effort. Theor. Popul. Biol., 45, 76–91. MATHCrossRefGoogle Scholar
  33. Maynard Smith, J. (1976). Evolution and the theory of games. Am. Sci., 64, 41–45. Google Scholar
  34. Metz, J. A. J., Geritz, S. A. H., Meszéna, G., Jacobs, F. J. A., & van Heerwaarden, J. S. (1996). Adaptive dynamics, a geometrical study of the consequenses of nearly faithful reproduction. In S. J. van Strien & S. M. Verduyn Lunel (Eds.), Stochastic and spatial structures of dynamical systems (pp. 183–231). Amsterdam: North-Holland. Google Scholar
  35. Metz, J. A. J., & Gyllenberg, M. (2001). How should we define fitness in structured metapopulation models? Including an application to the calculation of ES dispersal strategies. Proc. R. Soc. Lond. B, 268, 499–508. CrossRefGoogle Scholar
  36. Metz, J. A. J., Nisbet, R. M., & Geritz, S. A. H. (1992). How should we define “fitness” for general ecological scenarios? Trends Ecol. Evol., 7, 198–202. CrossRefGoogle Scholar
  37. Nowak, M. A., & Sigmund, K. (2005). Evolution of indirect reciprocity. Nature, 437, 1291–1298. CrossRefGoogle Scholar
  38. Nurmi, T., & Parvinen, K. (2008). On the evolution of specialization with a mechanistic underpinning in structured metapopulations. Theor. Popul. Biol., 73, 222–243. MATHCrossRefGoogle Scholar
  39. Nurmi, T., & Parvinen, K. (2011). Joint evolution of specialization and dispersal in structured metapopulations. J. Theor. Biol., 275, 78–92. doi:10.1016/j.jtbi.2011.01.023. CrossRefGoogle Scholar
  40. Ohtsuki, H., & Iwasa, Y. (2006). The leading eight: social norms that can maintain cooperation by indirect reciprocity. J. Theor. Biol., 239, 435–444. MathSciNetCrossRefGoogle Scholar
  41. Parvinen, K. (1999). Evolution of migration in a metapopulation. Bull. Math. Biol., 61, 531–550. CrossRefGoogle Scholar
  42. Parvinen, K. (2002). Evolutionary branching of dispersal strategies in structured metapopulations. J. Math. Biol., 45, 106–124. MathSciNetMATHCrossRefGoogle Scholar
  43. Parvinen, K. (2005). Evolutionary suicide. Acta Biotheor., 53, 241–264. CrossRefGoogle Scholar
  44. Parvinen, K. (2006). Evolution of dispersal in a structured metapopulation model in discrete time. Bull. Math. Biol., 68, 655–678. MathSciNetCrossRefGoogle Scholar
  45. Parvinen, K. (2007). Evolutionary suicide in a discrete-time metapopulation model. Evol. Ecol. Res., 9, 619–633. Google Scholar
  46. Parvinen, K. (2010). Adaptive dynamics of cooperation may prevent the coexistence of defectors and cooperators and even cause extinction. Proc. R. Soc. Lond. B, 277, 2493–2501. CrossRefGoogle Scholar
  47. Parvinen, K., Dieckmann, U., Gyllenberg, M., & Metz, J. A. J. (2003). Evolution of dispersal in metapopulations with local density dependence and demographic stochasticity. J. Evol. Biol., 16, 143–153. CrossRefGoogle Scholar
  48. Parvinen, K., & Egas, M. (2004). Dispersal and the evolution of specialisation in a two-habitat type metapopulation. Theor. Popul. Biol., 66, 233–248. CrossRefGoogle Scholar
  49. Parvinen, K., & Metz, J. A. J. (2008). A novel fitness proxy in structured locally finite metapopulations with diploid genetics, with an application to dispersal evolution. Theor. Popul. Biol., 73, 517–528. MATHCrossRefGoogle Scholar
  50. Queller, D. C. (1994). Genetic relatedness in viscous populations. Evol. Ecol., 8, 70–73. CrossRefGoogle Scholar
  51. Racey, D., Inglis, R. F., Harrison, F., Oliver, A., & Buckling, A. (2010). The effect of elevated mutation rates on the evolution of cooperation and virulence of Pseudomonas aeruginosa. Evolution, 64, 515–521. CrossRefGoogle Scholar
  52. Rankin, D. J., & López-Sepulcre, A. (2005). Can adaptation lead to extinction? Oikos, 111, 616–619. CrossRefGoogle Scholar
  53. Ross-Gillespie, A., Gardner, A., Buckling, A., West, S. A., & Griffin, A. S. (2009). Density dependence and cooperation: theory and a test with bacteria. Evolution, 63, 2315–2325. CrossRefGoogle Scholar
  54. Taylor, P. D. (1992). Altruism in viscous populations—an inclusive fitness model. Evol. Ecol., 6, 352–356. CrossRefGoogle Scholar
  55. Van Tienderen, P. H., & De Jong, G. (1986). Sex ratio under the haystack model: Polymorphism may occur. J. Theor. Biol., 122, 69–81. CrossRefGoogle Scholar
  56. Webb, C. (2003). A complete classification of Darwinian extinction in ecological interactions. Am. Nat., 161, 181–205. CrossRefGoogle Scholar
  57. West, S. A., Griffin, A. S., & Gardner, A. (2008). Social semantics: how useful has group selection been? J. Evol. Biol., 21, 374–385. Google Scholar

Copyright information

© Society for Mathematical Biology 2011

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of TurkuTurkuFinland

Personalised recommendations