Bulletin of Mathematical Biology

, Volume 73, Issue 9, pp 2175–2200

Modelling Nutrient Uptake by Individual Hyphae of Arbuscular Mycorrhizal Fungi: Temporal and Spatial Scales for an Experimental Design

Open Access
Original Article


Arbuscular mycorrhizas, associations between plant roots and soil fungi, are ubiquitous among land plants. Arbuscular mycorrhizas can be beneficial for plants by overcoming limitations in nutrient supply. Hyphae, which are long and thin fungal filaments extending from the root surface into the soil, increase the volume of soil accessible for plant nutrient uptake. However, no models so far specifically consider individual hyphae. We developed a mathematical model for nutrient uptake by individual fungal hyphae in order to assess suitable temporal and spatial scales for a new experimental design where fungal uptake parameters are measured on the single hyphal scale. The model was developed based on the conservation of nutrients in an artificial cylindrical soil pore (capillary tube) with adsorbing wall, and analysed based on parameter estimation and non-dimensionalisation. An approximate analytical solution was derived using matched asymptotic expansion. Results show that nutrient influx into a hypha from a small capillary tube is characterized by three phases: Firstly, uptake rapidly decreases as the hypha takes up nutrients, secondly, the depletion zone reaches the capillary wall and thus uptake is sustained by desorption of nutrients from the capillary wall, and finally, uptake goes to zero after nutrients held on the capillary wall have been completely depleted. Simulating different parameter regimes resulted in recommending the use of capillaries filled with hydrogel instead of water in order to design an experiment operating over measurable time scales.


Experimental design Fungal nutrient uptake Mineral weathering Mycorhizosphere Phosphorus cycling Simulation model 


  1. Abdallah, E. A. M., & Gagnon, G. A. (2009). Arsenic removal from groundwater through iron oxyhydroxide coated waste products. Can. J. Civ. Eng., 36, 881–888. CrossRefGoogle Scholar
  2. Abu Ali, R., Murphy, R. J. & Dickinson, D. J. (1999). Investigation of the extracellular mucilaginous materials produced by some wood decay fungi. Mycol. Res., 103, 1453–1461. CrossRefGoogle Scholar
  3. Allen, M. F. (2007). Mycorrhizal fungi: Highways for water and nutrients in arid soils. Vadose Zone J., 6, 291–297. CrossRefGoogle Scholar
  4. Barber, S. A. (1995). Soil nutrient bioavailability: a mechanistic approach. New York: Wiley. Google Scholar
  5. Boyle, J. R., & Voigt, G. K. (1973). Biological weathering of silicate minerals. Plant Soil, 38, 191–201. CrossRefGoogle Scholar
  6. Cameron, K. C., & Buchan, G. D. (2006). Porosity and pore size distribution. In R. Lal (Ed.), Encyclopedia of soil science (pp. 1350–1353). Boca Raton: CRC Press. Google Scholar
  7. Chen, J. S., Mansell, R. S., Nkedi-Kizza, P., & Burgoa, B. A. (1996). Phosphorus transport during transient, unsaturated water flow in an acid sandy soil. Soil Sci. Soc. Am. J., 60, 42–48. CrossRefGoogle Scholar
  8. Crank, J. (1975). The mathematics of diffusion. Oxford: Clarendon Press. Google Scholar
  9. da Silveira, A. P. D., & Cardoso, E. J. B. N. (2004). Arbuscular mycorrhiza and kinetic parameters of phosphorus absorption by bean plants. Sci. Agric., 61, 203–209. CrossRefGoogle Scholar
  10. Darrah, P. R., Jones, D. L., Kirk, G. J. D., & Roose, T. (2006). Modelling the rhizosphere: a review of methods for ‘upscaling’ to the whole-plant scale. Eur. J. Soil Sci., 57, 13–25. CrossRefGoogle Scholar
  11. Deressa, T. G., & Schenk, M. K. (2008). Contribution of roots and hyphae to phosphorus uptake of mycorrhizal onion (Allium cepa L.)—a mechanistic modeling approach. J. Plant Nutr. Soil Sci., 171, 810–820. CrossRefGoogle Scholar
  12. Ezawa, T., Smith, S. E., & Smith, F. A. (2002). P metabolism and transport in AM fungi. Plant Soil, 244, 221–230. CrossRefGoogle Scholar
  13. Facelli, E., Smith, S. E., Facelli, J. M., Christophersen, H. M., & Smith, F.A. (2010). Underground friends or enemies: model plants help to unravel direct and indirect effects of arbuscular mycorrhizal fungi on plant competition. New Phytol., 185, 1050–1061. CrossRefGoogle Scholar
  14. Fowler, A. C. (1997). Mathematical models in the applied sciences. Cambridge: Cambridge University Press. Google Scholar
  15. Hinsinger, P., Gobran, G. R., Gregory, P. J., & Wenzel, W. W. (2005). Rhizosphere geometry and heterogeneity arising from root-mediated physical and chemical processes. New Phytol., 168, 293–303. CrossRefGoogle Scholar
  16. Jakobsen, I., Abbott, L. K., & Robson, A. D. (1992). External hyphae of vesicular-arbuscular mycorrhizal fungi associated with Trifolium subterraneum L. 1. Spread of hyphae and phosphorus inflow into roots. New Phytol., 120, 371–380. CrossRefGoogle Scholar
  17. Jolicoeur, M., Germette, S., Gaudette, M., Perrier, M., & Bécard, G. (1998). Intracellular pH in Arbuscular Mycorrhizal Fungi: a symbiotic physiological marker. Plant Physiol., 116, 1279–1288. CrossRefGoogle Scholar
  18. Jones, D. L., & Hinsinger, P. (2008). The rhizosphere: complex by design. Plant Soil, 312, 1–6. CrossRefGoogle Scholar
  19. Jones, D. L., Hodge, A., & Kuzyakov, Y. (2004). Plant and mycorrhizal regulation of rhizodeposition. New Phytol., 163, 459–480. CrossRefGoogle Scholar
  20. Jongmans, A. G., Van Breemen, N., Lundström, U., Van Hees, P. A. W., Finlay, R. D., Srinivasan, M., Unestam, T., Giesler, R., Melkerud, P. A., & Olsson, M. (1997). Rock-eating fungi [4]. Nature, 389, 682–683. CrossRefGoogle Scholar
  21. Kirk, G. J. D., Santos, E. E., & Santos, M. B. (1999). Phosphate solubilization by organic anion excretion from rice growing in aerobic soil: Rates of excretion and decomposition, effects on rhizosphere pH and effects on phosphate solubility and uptake. New Phytol., 142, 185–200. CrossRefGoogle Scholar
  22. Koorevaar, P., Menelik, G., & Dirksen, C. (1983). Elements of soil physics. Amsterdam: Elsevier. Google Scholar
  23. Krcmar, P., Novotny, C., Marais, M. F., & Joseleau, J. P. (1999). Structure of extracellular polysaccharide produced by lignin-degrading fungus Phlebia radiata in liquid culture. Int. J. Biol. Macromol., 24, 61–64. CrossRefGoogle Scholar
  24. Leigh, J., Hodge, A., & Fitter, A. H. (2009). Arbuscular mycorrhizal fungi can transfer substantial amounts of nitrogen to their host plant from organic material. New Phytol., 181, 199–207. CrossRefGoogle Scholar
  25. Leitner, D., Klepsch, S., Ptashnyk, M., Marchant, A., Kirk, G. J. D., Schnepf, A., & Roose, T. (2010). A dynamic model of nutrient uptake by root hairs. New Phytol., 185, 792–802. CrossRefGoogle Scholar
  26. Lide, D. R. (2000). Handbook of chemistry and physics (83th ed.) Boca Raton: CRC Press. Google Scholar
  27. Mackay, A. D., & Barber, S. A. (1985). Soil-moisture effect on potassium uptake by corn. Agron. J., 77, 524–527. CrossRefGoogle Scholar
  28. McKeague, J. A., Chesire, M. V., Andreux, F., & Berthelin, J. (1986). Organo mineral complexes in relation to pedogenesis. In P. M. Huang, M. Schnitzer (Eds.), Interactions of soil minerals with natural organics and microbes (pp. 549–592). Madison: SSSA. Google Scholar
  29. Moribe, K., Nomizu, N., Izukura, S., Yamamoto, K., Tozuka, Y., Sakurai, M., Ishida, A., Nishida, H., & Miyazaki, M. (2008). Physicochemical morphological and therapeutic evaluation of agarose hydrogel particles as a reservoir for basic fibroblast growth factor. Pharm. Dev. Technol., 13, 541–547. CrossRefGoogle Scholar
  30. Ockendon, H., & Ockendon, J. R. (1995). Cambridge texts in applied mathematics. Viscous flow. Cambridge: Cambridge University Press. MATHGoogle Scholar
  31. Park, C. D., Walker, J., Tannenbaum, R., Stiegman, A. E., Frydrych, J., & Machala, L. (2009). Sol-gel-derived iron oxide thin films on silicon: surface properties and interfacial chemistry. ACS Appl. Mater. Interfaces, 1, 1843–1846. CrossRefGoogle Scholar
  32. Pierard, G. E., Pierard-Franchimont, C., & Quatresooz, P. (2007). Fungal thigmotropism in onychomycosis and in a clear hydrogel pad model. Dermatoloty, 215, 107–113. CrossRefGoogle Scholar
  33. Plassard, C., & Dell, B. (2010). Phosphorus nutrition of mycorrhizal trees. Tree Physiol., 30, 1129–1139. CrossRefGoogle Scholar
  34. Roose, T., & Schnepf, A. (2008). Mathematical models of plant-soil interaction. Philos. Trans. R. Soc., Math. Phys. Eng. Sci., 366, 4597–4611. MathSciNetCrossRefGoogle Scholar
  35. Roose, T., Fowler, A., & Darrah, P. (2001). A mathematical model of plant nutrient uptake. J. Math. Biol., 42, 347–360. MathSciNetMATHCrossRefGoogle Scholar
  36. Rosling, A., Roose, T., Herrmann, A. M., Davidson, F. A., Finlay, R. D., & Gadd, G. M. (2009). Approaches to modelling mineral weathering by fungi. Fungal Biol. Rev., 23(4), 138–144. CrossRefGoogle Scholar
  37. Saleque, M. A., & Kirk, G. J. (1995). Root-induced solubilization of phosphate in the rhizosphere of lowland rice. New Phytol., 129, 325–336. CrossRefGoogle Scholar
  38. Schnepf, A., & Roose, T. (2006). Modelling the contribution of arbuscular mycorrhizal fungi to plant phosphate uptake. New Phytol., 171, 669–682. Google Scholar
  39. Schnepf, A., Roose, T., & Schweiger, P. (2008). Impact of growth and uptake patterns of arbuscular mycorrhizal fungi on plant phosphorus uptake—a modelling study. Plant Soil, 312, 85–99. CrossRefGoogle Scholar
  40. Schweiger, P., & Jakobsen, I. (1999). The role of mycorrhizas in plant P nutrition: Fungal uptake kinetics and genotype variation. In G. Gissel-Nielsen, A. Jensen (Eds.), Plant nutrition—molecular biology and genetics (pp. 277–289). Dordrecht: Kluwer Academic. Google Scholar
  41. Schweiger, P., & Jakobsen, I. (2000). Laboratory and field methods for measurement of hyphal uptake of nutrients in soil. Plant Soil, 226, 237–244. CrossRefGoogle Scholar
  42. Sharma, A. K., Srivastava, P. C., & Johri, B. N. (1999). Multiphasic zinc uptake system in mycorrhizal and nonmycorrhizal roots of French bean (Phaseolus vulgaris L.). Curr. Sci., 76, 228–230. Google Scholar
  43. Smith, S. E., Smith, F. A., & Jakobsen, I. (2003). Mycorrhizal fungi can dominate phosphate supply to plants irrespective of growth responses. Plant Physiol., 130, 16–20. CrossRefGoogle Scholar
  44. Staddon, P. L., Ramsey, C. B., Ostle, N., Ineson, P., & Fitter, A. H. (2003). Rapid turnover of hyphae of mycorrhizal fungi determined by AMS microanalysis of 14C. Science, 300, 1138–1140. CrossRefGoogle Scholar
  45. Tinker, P. B., & Nye, P. H. (2000). Solute movement in the rhizosphere. London: Oxford University Press. Google Scholar
  46. Van Breemen, N., Finlay, R., Lundström, U., Jongmans, A. G., Giesler, R., & Olsson, M. (2000). Mycorrhizal weathering: a true case of mineral plant nutrition? Biogeochemistry, 49, 53–67. CrossRefGoogle Scholar
  47. Zheng, T., Liang, Y. H., Ye, S. H., & He, Z. Y. (2009). Superabsorbent hydrogels as carriers for the controlled-release of urea: experiments and a mathematical model describing the release rate. Biosyst. Eng., 102, 44–50. CrossRefGoogle Scholar

Copyright information

© The Author(s) 2011

Authors and Affiliations

  1. 1.Department of Forest and Soil SciencesBOKU—University of Natural Resources and Life Sciences ViennaViennaAustria
  2. 2.Environment Centre WalesBangor UniversityGwyneddUK
  3. 3.School of Engineering SciencesUniversity of SouthamptonSouthamptonUK

Personalised recommendations