Bulletin of Mathematical Biology

, Volume 73, Issue 9, pp 2109–2131 | Cite as

A Model of NMDA Receptor Control of F-actin Treadmilling in Synaptic Spines and Their Growth

  • Max R. BennettEmail author
  • Les Farnell
  • William G. Gibson
Original Article


Synaptic spines grow as a consequence of the formation of F-actin filaments at the spine head. The dynamics of F-actin in the spine head upon excitation of N-methy-D-aspartate (NMDA) receptors has recently been investigated experimentally, but there is no quantitative account of how these dynamic changes occur upon activation of these receptors; this we now supply. Dynamics of F-actin at the apex of lamellipodia have been investigated in detail, giving rise to the treadmilling theory of F-actin dynamics, involving catalysis by profilin, for which quantitative models are now available. Here, we adapt such a model to describe the dynamics of F-actin in the synaptic-spine head and show that it gives quantitative descriptions of this treadmilling phenomena which are well fitted by Monte Carlo simulations. Next, the means by which excitation of NMDA receptors enhances the activity of profilin through activity of the Rho small GTPase RhoA and the specific kinase ROCK is discussed. This is then used to model the NMDA receptor excitatory enhancement of profilin and so the treadmilling process of F-actin dynamics in spine growth. Such modelling provides a quantitative description of the synaptic-spine dynamics of the filamentous to globular actin ratio that is observed experimentally.


Synaptic spines F-actin NMDA Profilin Treadmilling Monte Carlo Mathematical model 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11538_2010_9614_MOESM1_ESM.pdf (37 kb)
Monte Carlo Method (PDF 37.4 KB)

MP4 5.92 MB


  1. Ahmed, R., Zha, X., Green, S., & Dailey, M. (2006). Synaptic activity and F-actin coordinately regulate CaMKIIα localization to dendritic postsynaptic sites in developing hippocampal slices. Mol. Cell. Neurosci., 31(1), 37–51. CrossRefGoogle Scholar
  2. Applewhite, D., Barzik, M., Kojima, S., Svitkina, T., Gertler, F., & Borisy, G. (2007). Ena/VASP proteins have an anti-capping independent function in filopodia formation. Mol. Biol. Cell, 18(7), 2579. CrossRefGoogle Scholar
  3. Asanuma, K., Kim, K., Oh, J., Giardino, L., Chabanis, S., Faul, C., Reiser, J., & Mundel, P. (2005). Synaptopodin regulates the actin-bundling activity of α-actin in an isoform-specific manner. J. Clin. Invest., 115(5), 1188–1198. Google Scholar
  4. Asrican, B., Lisman, J., & Otmakhov, N. (2007). Synaptic strength of individual spines correlates with bound Ca2+ calmodulin-dependent kinase II. J. Neurosci., 27(51), 14007. CrossRefGoogle Scholar
  5. Bennett, M. (2009). Positive and negative symptoms in schizophrenia: the NMDA receptor hypofunction hypothesis neuregulin/ErbB4 and synapse regression. Aust. N. Z. J. Psychiatry, 43(8), 711–721. CrossRefGoogle Scholar
  6. Bramham, C., & Wells, D. (2007). Dendritic mRNA: transport, translation and function. Nat. Rev. Neurosci., 8(10), 776–789. CrossRefGoogle Scholar
  7. Buchs, P., & Muller, D. (1996). Induction of long-term potentiation is associated with major ultrastructural changes of activated synapses. Proc. Natl. Acad. Sci. USA, 93(15), 8040–8045. CrossRefGoogle Scholar
  8. Cai, Y., Biais, N., Giannone, G., Tanase, M., Jiang, G., Hofman, J., Wiggins, C., Silberzan, P., Buguin, A., Ladoux, B., et al. (2006). Nonmuscle myosin IIA-dependent force inhibits cell spreading and drives F-actin flow. Biophys. J., 91(10), 3907–3920. CrossRefGoogle Scholar
  9. Carlisle, H., & Kennedy, M. (2005). Spine architecture and synaptic plasticity. Trends Neurosci., 28(4), 182–187. CrossRefGoogle Scholar
  10. Carvalho, A., Caldeira, M., Santos, S., & Duarte, C. (2008). Role of the brain-derived neurotrophic factor at glutamatergic synapses. Br. J. Pharmacol., 153(1), 310. CrossRefGoogle Scholar
  11. Cingolani, L., & Goda, Y. (2008). Actin in action: the interplay between the actin cytoskeleton and synaptic efficacy. Nat. Rev. Neurosci., 9(5), 344–356. CrossRefGoogle Scholar
  12. Da Silva, J., Medina, M., Zuliani, C., Di Nardo, A., Witke, W., & Dotti, C. (2003). RhoA/ROCK regulation of neuritogenesis via profilin IIa-mediated control of actin stability. J. Cell Biol., 162(7), 1267. CrossRefGoogle Scholar
  13. Delorme, V., Machacek, M., DerMardirossian, C., Anderson, K., Wittmann, T., Hanein, D., Waterman-Storer, C., Danuser, G., & Bokoch, G. (2007). Cofilin activity downstream of Pak1 regulates cell protrusion efficiency by organizing lamellipodium and lamella actin networks. Dev. Cell, 13(5), 646–662. CrossRefGoogle Scholar
  14. Edwards, D., Sanders, L., Bokoch, G., & Gill, G. (1999). Activation of LIM-kinase by Pak1 couples Rac/Cdc42 GTPase signalling to actin cytoskeletal dynamics. Nat. Cell Biol., 1, 253–259. CrossRefGoogle Scholar
  15. Ethell, I., & Pasquale, E. (2005). Molecular mechanisms of dendritic spine development and remodeling. Prog. Neurobiol., 75(3), 161–205. CrossRefGoogle Scholar
  16. Fifkova, E., & Morales, M. (1989). Calcium-regulated contractile and cytoskeletal proteins in dendritic spines may control synaptic plasticity. Ann. NY Acad. Sci., 568(1), 131–137. CrossRefGoogle Scholar
  17. Haeckel, A., Ahuja, R., Gundelfinger, E., Qualmann, B., & Kessels, M. (2008). The actin-binding protein Abp1 controls dendritic spine morphology and is important for spine head and synapse formation. J. Neurosci., 28(40), 10031. CrossRefGoogle Scholar
  18. Higgs, H., & Pollard, T. (2001). Regulation of actin filament network formation through ARP2/3 complex: activation by a diverse array of proteins. Ann. Rev. Biochem., 70(1), 649–676. CrossRefGoogle Scholar
  19. Honkura, N., Matsuzaki, M., Noguchi, J., Ellis-Davies, G., & Kasai, H. (2008). The subspine organization of actin fibers regulates the structure and plasticity of dendritic spines. Neuron, 57(5), 719–729. CrossRefGoogle Scholar
  20. Hosokawa, T., Rusakov, D., Bliss, T., & Fine, A. (1995). Repeated confocal imaging of individual dendritic spines in the living hippocampal slice: evidence for changes in length and orientation associated with chemically induced LTP. J. Neurosci., 15(8), 5560–5573. Google Scholar
  21. Huber, F., Käs, J., & Stuhrmann, B. (2008). Growing actin networks form lamellipodium and lamellum by self-assembly. Biophys. J., 95(12), 5508–5523. CrossRefGoogle Scholar
  22. Lin, C., Espreafico, E., Mooseker, M., & Forscher, P. (1997). Myosin drives retrograde F-actin flow in neuronal growth cones. Biol. Bull. 192, 1, 183–185. CrossRefGoogle Scholar
  23. Mogilner, A. (2006). On the edge: modeling protrusion. Curr. Opin. Cell Biol., 18(1), 32–39. CrossRefGoogle Scholar
  24. Mogilner, A., & Edelstein-Keshet, L. (2002). Regulation of actin dynamics in rapidly moving cells: a quantitative analysis. Biophys. J., 83(3), 1237–1258. CrossRefGoogle Scholar
  25. Nakagawa, T., Engler, J., & Sheng, M. (2004). The dynamic turnover and functional roles of α-actinin in dendritic spines. Neuropharmacology, 47(5), 734–745. CrossRefGoogle Scholar
  26. Nakayama, A., & Luo, L. (2000). Intracellular signaling pathways that regulate dendritic spine morphogenesis. Hippocampus, 10(5). Google Scholar
  27. Okamoto, K., Nagai, T., Miyawaki, A., & Hayashi, Y. (2004). Rapid and persistent modulation of actin dynamics regulates postsynaptic reorganization underlying bidirectional plasticity. Nat. Neurosci., 7(10), 1104–1112. CrossRefGoogle Scholar
  28. Okamoto, K., Narayanan, R., Lee, S., Murata, K., & Hayashi, Y. (2007). The role of CaMKII as an F-actin-bundling protein crucial for maintenance of dendritic spine structure. Proc. Natl. Acad. Sci. USA, 104(15), 6418. CrossRefGoogle Scholar
  29. Okubo-Suzuki, R., Okada, D., Sekiguchi, M., & Inokuchi, K. (2008). Synaptopodin maintains the neural activity-dependent enlargement of dendritic spines in hippocampal neurons. Mol. Cell. Neurosci., 38(2), 266–276. CrossRefGoogle Scholar
  30. Pollard, T., & Borisy, G. (2003). Cellular motility driven by assembly and disassembly of actin filaments. Cell, 112(4), 453–465. CrossRefGoogle Scholar
  31. Racz, B., & Weinberg, R. (2006). Spatial organization of cofilin in dendritic spines. Neuroscience, 138(2), 447–456. CrossRefGoogle Scholar
  32. Racz, B., & Weinberg, R. (2008). Organization of the Arp2/3 complex in hippocampal spines. J. Neurosci., 28(22), 5654. CrossRefGoogle Scholar
  33. Rohm, B., Rahim, B., Kleiber, B., Hovatta, I., & Püschel, A. (2000). The semaphorin 3A receptor may directly regulate the activity of small GTPases. FEBS Lett., 486(1), 68–72. CrossRefGoogle Scholar
  34. Rostaing, P., Real, E., Siksou, L., Lechaire, J., Boudier, T., Boeckers, T., Gertler, F., Gundelfinger, E., Triller, A., & Marty, S. (2006). Analysis of synaptic ultrastructure without fixative using high-pressure freezing and tomography. Eur. J. Neurosci., 24(12), 3463. CrossRefGoogle Scholar
  35. Saneyoshi, T., Wayman, G., Fortin, D., Davare, M., Hoshi, N., Nozaki, N., Natsume, T., & Soderling, T. (2008). Activity-dependent synaptogenesis: regulation by a CaM-kinase kinase/CaM-kinase I/βPIX signaling complex. Neuron, 57(1), 94–107. CrossRefGoogle Scholar
  36. Schaus, T., Taylor, E., & Borisy, G. (2007). Self-organization of actin filament orientation in the dendritic-nucleation/array-treadmilling model. Proc. Natl. Acad. Sci. USA, 104(17), 7086. CrossRefGoogle Scholar
  37. Schmidt, J., Morgan, P., Dowell, N., & Leu, B. (2002). Myosin light chain phosphorylation and growth cone motility. J. Neurobiol., 52(3). Google Scholar
  38. Schubert, V., & Dotti, C. (2007). Transmitting on actin: synaptic control of dendritic architecture. J. Cell Sci., 120(2), 205. CrossRefGoogle Scholar
  39. Schubert, V., Da Silva, J., & Dotti, C. (2006). Localized recruitment and activation of RhoA underlies dendritic spine morphology in a glutamate receptor-dependent manner. J. Cell Biol., 172(3), 453. CrossRefGoogle Scholar
  40. Sharma, K., Fong, D., & Craig, A. (2006). Postsynaptic protein mobility in dendritic spines: long-term regulation by synaptic NMDA receptor activation. Mol. Cell. Neurosci., 31(4), 702–712. CrossRefGoogle Scholar
  41. Shen, K., Teruel, M., Subramanian, K., & Meyer, T. (1998). CaMKII functions as an F-actin targeting module that localizes CaMKII/heterooligomers to dendritic spines. Neuron, 21, 593–606. CrossRefGoogle Scholar
  42. Svitkina, T., Verkhovsky, A., McQuade, K., & Borisy, G. (1997). Analysis of the actin-myosin II system in fish epidermal keratocytes: mechanism of cell body translocation. J. Cell Biol., 139(2), 397–415. CrossRefGoogle Scholar
  43. Svitkina, T., Bulanova, E., Chaga, O., Vignjevic, D., Kojima, S., Vasiliev, J., & Borisy, G. (2003). Mechanism of filopodia initiation by reorganization of a dendritic network. J. Cell Biol., 160(3), 409–421. CrossRefGoogle Scholar
  44. Ultanir, S., Kim, J., Hall, B., Deerinck, T., Ellisman, M., & Ghosh, A. (2007). Regulation of spine morphology and spine density by NMDA receptor signaling in vivo. Proc. Natl. Acad. Sci. USA, 104(49), 19553–19558. CrossRefGoogle Scholar
  45. Van Troys, M., Huyck, L., Leyman, S., Dhaese, S., Vandekerkhove, J., & Ampe, C. (2008). Ins and outs of ADF/cofilin activity and regulation. Eur. J. Cell Biol., 87(8–9), 649–667. Google Scholar

Copyright information

© Society for Mathematical Biology 2010

Authors and Affiliations

  • Max R. Bennett
    • 1
    Email author
  • Les Farnell
    • 2
  • William G. Gibson
    • 2
  1. 1.The Brain and Mind Research Institute and The Centre for Mathematical BiologyThe University of SydneyNew South WalesAustralia
  2. 2.The School of Mathematics and Statistics and The Centre for Mathematical BiologyThe University of SydneyNew South WalesAustralia

Personalised recommendations