Bulletin of Mathematical Biology

, Volume 73, Issue 8, pp 1932–1951 | Cite as

Stochastic Analysis of the Motion of DNA Nanomechanical Bipeds

  • Iddo Ben-Ari
  • Khalid Boushaba
  • Anastasios MatzavinosEmail author
  • Alexander Roitershtein
Original Article


In this paper, we formulate and analyze a Markov process modeling the motion of DNA nanomechanical walking devices. We consider a molecular biped restricted to a well-defined one-dimensional track and study its asymptotic behavior. Our analysis allows for the biped legs to be of different molecular composition, and thus to contribute differently to the dynamics. Our main result is a functional central limit theorem for the biped with an explicit formula for the effective diffusivity coefficient in terms of the parameters of the model. A law of large numbers, a recurrence/transience characterization and large deviations estimates are also obtained. Our approach is applicable to a variety of other biological motors such as myosin and motor proteins on polymer filaments.


DNA nanodevices Molecular spiders Controlled random walks Markov additive processes Law of large numbers Recurrence-transience criteria Large deviations Central limit theorem Regeneration structure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Antal, T., & Krapivsky, P. L. (2007). Molecular spiders with memory. Phys. Rev. E, 76, 021121. CrossRefGoogle Scholar
  2. Antal, T., Krapivsky, P. L., & Mallick, K. (2007). Molecular spiders in one dimension. J. Stat. Mech., P08027. Google Scholar
  3. Bath, J., & Turberfield, A. J. (2007). DNA nanomachines. Nat. Nanotechnol., 2, 275–284. CrossRefGoogle Scholar
  4. Ben-Ari, I., & Neumann, M. (2010, accepted for publication). Probabilistic approach to Perron root, the group inverse, and applications. Linear Multilinear Algebra. Preprint is available at
  5. Ben-Israel, A., & Greville, T. N. E. (2003). Generalized inverses (2nd ed.). CMS books in mathematics (Vol. 15). New York: Springer. zbMATHGoogle Scholar
  6. Billingsley, P. (1999). Convergence of probability measures (2nd edn.). New York: Wiley. zbMATHCrossRefGoogle Scholar
  7. Deutsch, E., & Neumann, M. (1985). On the first and second order derivatives of the Perron vector. Linear Algebra Appl., 71, 57–76. zbMATHCrossRefMathSciNetGoogle Scholar
  8. Durrett, R. (1996). Probability: Theory and Examples (2nd edn.). Belmont: Duxbury. Google Scholar
  9. Gallesco, C., Müller, S., & Popov, S. (2010). A note on spider walks. ESAIM: Probab. Stat. doi: 10.1051/ps/2010008.
  10. Goel, A., & Vogel, V. (2008). Harnessing biological motors to engineer systems for nanoscale transport and assembly. Nat. Nanotechnol., 3, 465–475. CrossRefGoogle Scholar
  11. Kipnis, C., & Varadhan, S. R. S. (1986). Central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusions. Commun. Math. Phys., 104, 1–19. zbMATHCrossRefMathSciNetGoogle Scholar
  12. Kosygina, E., & Zerner, M. (2008). Positively and negatively excited random walks on integers, with branching processes. Electron. J. Probab., 13, 1952–1979. zbMATHMathSciNetGoogle Scholar
  13. Lalley, S. P. (1986). Ruelle’s Perron–Frobenius theorem and the central limit theorem for additive functionals of one-dimensional Gibbs states. In IMS lecture notes monograph series: Vol. 8. Adaptive statistical procedures and related topics (pp. 428–446). Upton, NY, 1985. CrossRefGoogle Scholar
  14. Macci, C. (2001). Continuous-time Markov additive processes: composition of large deviation principles and comparison between exponential rates of convergence. J. Appl. Probab., 38, 917–931. zbMATHCrossRefMathSciNetGoogle Scholar
  15. Meyn, S., & Tweedie, R. L. (2009). Markov chains and stochastic stability. Cambridge mathematical library. Cambridge: Cambridge University Press. zbMATHGoogle Scholar
  16. Müller, M. I. J., Klumpp, S., & Lipowsky, R. (2008). Tug-of-war as a cooperative mechanism for bidirectional cargo transport by molecular motors. Proc. Natl. Acad. Sci. USA, 105, 4609–4614. CrossRefGoogle Scholar
  17. Ney, P., & Nummelin, E. (1987). Markov additive processes, II: large deviations. Ann. Probab., 15, 593–609. zbMATHCrossRefMathSciNetGoogle Scholar
  18. Pei, R., Taylor, S. K., Stefanovic, D., Rudchenko, S., Mitchell, T. E., & Stojanovic, M. N. (2006). Behavior of polycatalytic assemblies in a substrate-displaying matrix. J. Am. Chem. Soc., 128, 12693–12699. CrossRefGoogle Scholar
  19. Pollard, T., & Borisy, G. (2003). Cellular motility driven by assembly and disassembly of actin filaments. Cell, 112, 453–465. CrossRefGoogle Scholar
  20. Seeman, N. C. (2005). From genes to machines: DNA nanomechanical devices. Trends Biochem. Sci., 30, 119–125. CrossRefGoogle Scholar
  21. Seneta, E. (2006). Non-negative matrices and Markov chains. New York: Springer. Revised reprint of the second (1981) edition. zbMATHGoogle Scholar
  22. Sherman, W. B., & Seeman, N. C. (2004). A precisely controlled DNA biped walking device. Nano Lett., 4, 1203–1207. CrossRefGoogle Scholar
  23. Sznitman, A. S. (2000). Slowdown estimates and central limit theorem for random walks in random environment. J. Eur. Math. Soc., 2, 93–143. zbMATHCrossRefMathSciNetGoogle Scholar
  24. Weindl, J., Dawy, Z., Hanus, P., Zech, J., & Mueller, J. C. (2009). Modeling promoter search by E. coli RNA polymerase: one-dimensional diffusion in a sequence-dependent energy landscape. J. Theor. Biol., 7, 628–634. CrossRefGoogle Scholar
  25. Welte, M. A., & Gross, S. P. (2008). Molecular motors: a traffic cop within? HFSP J., 2, 178–182. CrossRefGoogle Scholar
  26. Wilkinson, J. H. (1988). The algebraic eigenvalue problem, numerical mathematics and scientific computation series. New York: Oxford University Press. Google Scholar
  27. Yurke, B., Turberfield, A. J., Millis, A. P. Jr., Simmel, F. C., & Neumann, J. L. (2000). A DNA-fueled molecular machine made of DNA. Nature, 406, 605–608. CrossRefGoogle Scholar

Copyright information

© Society for Mathematical Biology 2010

Authors and Affiliations

  • Iddo Ben-Ari
    • 1
  • Khalid Boushaba
    • 2
  • Anastasios Matzavinos
    • 2
    Email author
  • Alexander Roitershtein
    • 2
  1. 1.Department of MathematicsUniversity of ConnecticutStorrsUSA
  2. 2.Department of MathematicsIowa State UniversityAmesUSA

Personalised recommendations