Advertisement

Bulletin of Mathematical Biology

, Volume 73, Issue 9, pp 2013–2044 | Cite as

Law of the Minimum Paradoxes

  • Alexander N. GorbanEmail author
  • Lyudmila I. Pokidysheva
  • Elena V. Smirnova
  • Tatiana A. Tyukina
Original Article

Abstract

The “Law of the Minimum” states that growth is controlled by the scarcest resource (limiting factor). This concept was originally applied to plant or crop growth (Justus von Liebig, 1840, Salisbury, Plant physiology, 4th edn., Wadsworth, Belmont, 1992) and quantitatively supported by many experiments. Some generalizations based on more complicated “dose-response” curves were proposed. Violations of this law in natural and experimental ecosystems were also reported. We study models of adaptation in ensembles of similar organisms under load of environmental factors and prove that violation of Liebig’s law follows from adaptation effects. If the fitness of an organism in a fixed environment satisfies the Law of the Minimum then adaptation equalizes the pressure of essential factors and, therefore, acts against the Liebig’s law. This is the the Law of the Minimum paradox: if for a randomly chosen pair “organism–environment” the Law of the Minimum typically holds, then in a well-adapted system, we have to expect violations of this law.

For the opposite interaction of factors (a synergistic system of factors which amplify each other), adaptation leads from factor equivalence to limitations by a smaller number of factors.

For analysis of adaptation, we develop a system of models based on Selye’s idea of the universal adaptation resource (adaptation energy). These models predict that under the load of an environmental factor a population separates into two groups (phases): a less correlated, well adapted group and a highly correlated group with a larger variance of attributes, which experiences problems with adaptation. Some empirical data are presented and evidences of interdisciplinary applications to econometrics are discussed.

Keywords

Liebig’s Law Adaptation Fitness Stress 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aumont, O., Maier-Reimer, E., Blain, S., & Monfray, P. (2003). An ecosystem model of the global ocean including Fe, Si, P colimitations. Glob. Biogeochem. Cycles, 17(2), 1060. doi: 10.1029/2001GB001745. CrossRefGoogle Scholar
  2. Austin, M. (2007). Species distribution models and ecological theory: A critical assessment and some possible new approaches. Ecol. Model., 200(1–2), 1–19. CrossRefGoogle Scholar
  3. Ballantyne, F. IV, Menge, D. N. L., Ostling, A., & Hosseini, P. (2008). Nutrient recycling affects autotroph and ecosystem stoichiometry. Am. Nat., 171(4), 511–523. CrossRefGoogle Scholar
  4. Bloom, A. J., Chapin, F. S. III, & Mooney, H. A. (1985). Resource limitation in plants—an economic analogy. Annu. Rev. Ecol. Syst., 16, 363–392. Google Scholar
  5. Bomze, I. M. (2002). Regularity vs. degeneracy in dynamics, games, and optimization: a unified approach to different aspects. SIAM Rev., 44, 394–414. MathSciNetzbMATHCrossRefGoogle Scholar
  6. Breznitz, S. (Ed.) (1983). The denial of stress. New York: International Universities Press. Google Scholar
  7. Brown, G. C., & Cooper, C. E. (1993). Control analysis applied to a single enzymes: can an isolated enzyme have a unique rate–limiting step? Biochem. J., 294, 87–94. Google Scholar
  8. Bulygin, G. V., Mansurov, A. S., Mansurova, T. P., & Smirnova, E. V. (1992a). Dynamics of parameters of human metabolic system during the short-term adaptation. Institute of Biophysics, Russian Academy of Sciences, Preprint 180B, Krasnoyarsk. Google Scholar
  9. Bulygin, G. V., Mansurov, A. S., Mansurova, T. P., Mashanov, A. A., & Smirnova, E. V. (1992b). Impact of health on the ecological stress dynamics. Institute of Biophysics, Russian Academy of Sciences, Preprint 185B, Krasnoyarsk. Google Scholar
  10. Cade, B. S., Terrell, J. W., & Schroeder, R. L. (1999). Estimating effects of limiting factors with regression quantiles. Ecology, 80(1), 311–323. CrossRefGoogle Scholar
  11. Campbell, J. Y., Lo, A.-W., & MacKinlay, A. C. (1997). The econometrics of financial markets. Princeton: Princeton University Press. zbMATHGoogle Scholar
  12. Chapin, F. S. III, Schulze, E., & Mooney, H. A. (1990). The ecology and economics of storage in plants. Annu. Rev. Ecol. Syst., 21, 423–447. CrossRefGoogle Scholar
  13. Chauvet, G. A. (1999). S-propagators: a formalism for the hierarchical organization of physiological systems. Application to the nervous and the respiratory systems. Int. J. Gen. Syst., 28(1), 53–96. MathSciNetzbMATHCrossRefGoogle Scholar
  14. Chertov, O., Gorbushina, A., & Deventer, B. (2004). A model for microcolonial fungi growth on rock surfaces. Ecol. Model., 177(3–4), 415–426. CrossRefGoogle Scholar
  15. Colborn, T., Dumanoski, D., & Meyers, J. P. (1996). Our stolen future: are we threatening our fertility, intelligence, and survival?—A scientific detective story. Dutton: Peguin Books. Google Scholar
  16. Crampin, E. J., Halstead, M., Hunter, P., Nielsen, P., Noble, D., Smith, N., & Tawhai, M. (2004). Computational physiology and the physiome project. Exp. Physiol., 89, 1–26. CrossRefGoogle Scholar
  17. Daly, H. E. (1991). Population and economics—a bioeconomic analysis. Popul. Environ., 12(3), 257–263. CrossRefGoogle Scholar
  18. Danger, M., Daufresne, T., Lucas, F., Pissard, S., & Lacroix, G. (2008). Does Liebig’s law of the minimum scale up from species to communities? Oikos, 117(11), 1741–1751. CrossRefGoogle Scholar
  19. Droop, M. R. (1973). Some thoughts on nutrient limitation in algae. J. Phycol., 9, 264–272. Google Scholar
  20. Drożdż, S., Grümmer, F., Górski, A. Z., Ruf, F., & Speth, J. (2000). Dynamics of competition between collectivity and noise in the stock market. Physica A, 287, 440–449. CrossRefGoogle Scholar
  21. Egli, T., & Zinn, M. (2003). The concept of multiple-nutrient-limited growth of microorganisms and its application in biotechnological processes. Biotechnol. Adv., 22(1–2), 35–43. CrossRefGoogle Scholar
  22. Fisher, R. A. (1930). The genetical theory of natural selection. Oxford: Oxford University Press. zbMATHGoogle Scholar
  23. Fusco, G., & Minelli, A. (2010). Phenotypic plasticity in development and evolution: facts and concepts. Philos. Trans. R. Soc. B, 365(1540), 547–556. CrossRefGoogle Scholar
  24. Gause, G. F. (1934). The struggle for existence. Baltimore: Williams and Wilkins. Online: http://www.ggause.com/Contgau.htm. Google Scholar
  25. Goldstone, B. (1952). The general practitioner and the general adaptation syndrome. S. Afr. Med. J., 26, 88–92, 106–109. PMID: 14901129, 14913266. Google Scholar
  26. Gorban, A. N. (1984). Equilibrium encircling. Equations of chemical kinetics and their thermodynamic analysis. Novosibirsk: Nauka. Google Scholar
  27. Gorban, A. N. (2004). Singularities of transition processes in dynamical systems: qualitative theory of critical delays. Electron. J. Diff. Eqns. Monograph (Vol. 05). E-print: arXiv:chao-dyn/9703010. zbMATHGoogle Scholar
  28. Gorban, A. N. (2007). Selection theorem for systems with inheritance. Math. Model. Nat. Phenom., 2(4), 1–45. E-print: arXiv:cond-mat/0405451 [cond-mat.stat-mech]. MathSciNetCrossRefGoogle Scholar
  29. Gorban, A. N., & Radulescu, O. (2008). Dynamic and static limitation in multiscale reaction networks, revisited. Adv. Chem. Eng., 34, 103–173. CrossRefGoogle Scholar
  30. Gorban, A. N., & Zinovyev, A. Y. (2009). Principal graphs and manifolds. In E. S. Olivas et al. (Eds.), Handbook of research on machine learning applications and trends: algorithms, methods, and techniques (pp. 28–59). Hershey: IGI Global. E-print: arXiv:0809.0490 [cs.LG]. CrossRefGoogle Scholar
  31. Gorban, A. N., Manchuk, V. T., & Petushkova (Smirnova), E. V. (1987). Dynamics of physiological paramethers correlations and the ecological-evolutionary principle of polyfactoriality. In Problemy Ekologicheskogo Monitoringa i Modelirovaniya Ekosistem [The Problems of Ecological Monitoring and Ecosystem Modelling] (pp. 187–198). Leningrad: Gidrometeoizdat. Google Scholar
  32. Gorban, A. N., Kegl, B., Wunsch, D., & Zinovyev, A. (2008). Principal manifolds for data visualisation and dimension reduction. Lecture notes in computational science and engineering (Vol. 58). Berlin–Heidelberg–New York: Springer. CrossRefGoogle Scholar
  33. Gorban, A. N., Smirnova, E. V., & Tyukina, T. A. (2009). Correlations, risk and crisis: from physiology to finance. E-print: arXiv:0905.0129 [physics.bio-ph].
  34. Gorban, A. N., Radulescu, O., & Zinovyev, A. Y. (2010). Asymptotology of chemical reaction networks. Chem. Eng. Sci., 65, 2310–2324. CrossRefGoogle Scholar
  35. Greene, E. (1999). Phenotypic variation in larval development and evolution: polymorphism, polyphenism, and developmental reaction norms. In M. Wake & B. Hall (Eds.), The origin and evolution of larval forms (pp. 379–410). San Diego: Academic Press. CrossRefGoogle Scholar
  36. Haldane, J. B. S. (1932). The causes of evolution. London: Longmans Green. Google Scholar
  37. Hennessy, D. A. (2009). Crop yield skewness under law of the minimum technology. Am. J. Agric. Econ., 91(1), 197–208. MathSciNetCrossRefGoogle Scholar
  38. Hoffman, R. J. (1978). Environmental uncertainty and evolution of physiological adaptation in colias butterflies. Am. Nat., 112(988), 999–1015. CrossRefGoogle Scholar
  39. Hutchinson, G. E. (1961). The paradox of the plankton. Am. Nat., 95, 137–145. CrossRefGoogle Scholar
  40. Jolliffe, I. T. (2002). Principal component analysis, series. Springer series in statistics (Vol. 2). New York: Springer. Google Scholar
  41. Karmanova, I. V., Razzhevaikin, V. N., & Shpitonkov, M. I. (1996). Application of correlation adaptometry for estimating a response of herbaceous species to stress loadings. Dokl. Botanic. Sci., 346–348, 4–7. Translated from Dokl. Akad. Nauk SSSR, 346, 1996. Google Scholar
  42. Kingsolver, J. G., & Pfennig, D. W. (2007). Patterns and power of phenotypic selection in nature. BioScience, 57(7), 561–572. CrossRefGoogle Scholar
  43. Kleene, S. C. (1956). Representation of events in nerve sets and finite automata. In J. McCarthy & C. Shannon (Eds.), Automata studies (pp. 3–40). Princeton: Princeton University Press. Google Scholar
  44. Kobe, R. K. (1996). Intraspecific variation in sapling mortality and growth predicts geographic variation in forest composition. Ecol. Monogr., 66(2), 181–201. CrossRefGoogle Scholar
  45. Kolokoltsov, V., & Maslov, V. (1997). Idempotent analysis and applications. Dordrecht: Kluwer Academic. zbMATHGoogle Scholar
  46. Legović, T., & Cruzado, A. (1997). A model of phytoplankton growth on multiple nutrients based on the Michaelis–Menten–Monod uptake, Droop’s growth and Liebig’s law. Ecol. Model., 99(1), 19–31. CrossRefGoogle Scholar
  47. Lerner, H. R. (Ed.) (1999). Plant responses to environmental stresses: from phytohormones to genome reorganization. New York: Dekker. Google Scholar
  48. Litvinov, G. L. (2007). The Maslov dequantization idempotent and tropical mathematics: a brief introduction. J. Math. Sci., 140(3), 426–444. arXiv:math/0507014 [math.GM]. MathSciNetCrossRefGoogle Scholar
  49. Litvinov, G. L., & Maslov, V. P. (Eds.) (2005). Idempotent mathematics and mathematical physics. Contemporary mathematics (Vol. 377). Providence: AMS. zbMATHGoogle Scholar
  50. Mansurov, A. S., Mansurova, T. P., Smirnova, E. V., Mikitin, L. S., & Pershin, A. V. (1994). How do correlations between physiological parameters depend on the influence of different systems of stress factors. In R. G. Khlebopros (Ed.), Global & regional ecological problems (pp. 499–516). Krasnoyarsk: Krasnoyarsk State Technical University Publ. Google Scholar
  51. Mansurov, A. S., Mansurova, T. P., Smirnova, E. V., Mikitin, L. S., & Pershin, A. V. (1995). Human adaptation under influence of synergic system of factors (treatment of oncological patients after operation). Institute of Biophysics, Russian Academy of Sciences, Preprint 212B, Krasnoyarsk. Google Scholar
  52. Marmarelis, V. Z. (1997). Modeling methodology for nonlinear physiological systems. Ann. Biomed. Eng., 25(2), 239–251. CrossRefGoogle Scholar
  53. Marmarelis, V. Z. (2004). Nonlinear dynamic modeling of physiological systems. New York: Wiley. Google Scholar
  54. Maynard-Smith, J. (1982). Evolution and the theory of games. Cambridge: Cambridge University Press. Google Scholar
  55. McCarty, R., & Pasak, K. (2000). Alarm phase and general adaptation syndrome. In G. Fink (Ed.), Encyclopedia of stress (Vol. 1, pp. 126–130). San Diego: Academic Press. Google Scholar
  56. McGill, B. (2005). A mechanistic model of a mutualism and its ecological and evolutionary dynamics. Ecol. Model., 187(4), 413–425. CrossRefGoogle Scholar
  57. Menge, D. N. L., & Weitz, J. S. (2009). Dangerous nutrients: Evolution of phytoplankton resource uptake subject to virus attack. J. Theor. Biol., 257(1), 104–115. CrossRefGoogle Scholar
  58. Metz, J. A. J., Nisbet, R. M., & Geritz, S. A. H. (1992). How should we define fitness for general ecological scenarios. Trends Ecol. Evol., 7, 198–202. CrossRefGoogle Scholar
  59. Milo, R., Hou, J. H., Springer, M., Brenner, M. P., & Kirschner, M. W. (2007). The relationship between evolutionary and physiological variation in hemoglobin. PNAS USA, 104(43), 16998–17003. CrossRefGoogle Scholar
  60. Nijland, G. O., Schouls, J., & Goudriaan, J. (2008). Integrating the production functions of Liebig Michaelis-Menten, Mitscherlich and Liebscher into one system dynamics model. NJAS—Wageningen J. Life Sci., 55(2), 199–224. Google Scholar
  61. Odum, E. P. (1971). Fundamentals of ecology (3rd ed.). Philadelphia–London–Toronto: Saunders. Google Scholar
  62. Oechssler, J., & Riedel, F. (2002). On the dynamic foundation of evolutionary stability in continuous models. J. Econ. Theory, 107, 223–252. MathSciNetzbMATHCrossRefGoogle Scholar
  63. Ozden, M. Y. (2004). Law of the minimum in learning. Educ. Technol. Soc., 7(3), 5–8. Google Scholar
  64. Paris, Q. (1992). The return of von Liebig’s “Law of the Minimum”. Agron. J., 84, 1040–1046. CrossRefGoogle Scholar
  65. Plerou, V., Gopikrishnan, P., Rosenow, B., Amaral, L. A. N., Guhr, T., & Stanley, H. E. (2002). Random matrix approach to cross correlations in financial data. Phys. Rev. E, 65, 066126. CrossRefGoogle Scholar
  66. Ponomarenko, L. D., & Smirnova, E. V. (1998). Dynamical characteristics of blood system in mice with phenilhydrazin anemiya. In Proceeding of 9th international symposium “Reconstruction of homeostasis” (Vol. 1, pp. 42–45), March 15–20, Krasnoyarsk, Russia. Google Scholar
  67. Rockafellar, R. T. (1997). Convex analysis. Princeton: Princeton University Press. zbMATHGoogle Scholar
  68. Saito, M. A., & Goepfert, T. J. (2008). Some thoughts on the concept of colimitation: Three definitions and the importance of bioavailability. Limnol. Oceanogr., 53(1), 276–290. CrossRefGoogle Scholar
  69. Salisbury, F. (1992). Plant physiology (4th ed.). Belmont: Wadsworth. Google Scholar
  70. Schkade, J. K., & Schultz, S. (2003). Occupational adaptation in perspectives. In P. Kramer, J. Hinojosa & C. B. Royeen (Eds.), Perspectives in human occupation participation in life (pp. 181–221). Baltimore: Lippincott Williams & Wilkins. Chap. 7. Google Scholar
  71. Sedov, K. R., Gorban’, A. N., Petushkova (Smirnova), E. V., Manchuk, V. T., & Shalamova, E. N., (1988). Correlation adaptometry as a method of screening of the population. Vestn. Akad. Med. Nauk SSSR, 10, 69–75. PMID: 3223045. Google Scholar
  72. Selye, H. (1938a). Adaptation energy. Nature, 141(3577), 926. CrossRefGoogle Scholar
  73. Selye, H. (1938b). Experimental evidence supporting the conception of “adaptation energy”. Am. J. Physiol., 123, 758–765. Google Scholar
  74. Semevsky, F. N., & Semenov, S. M. (1982). Mathematical modeling of ecological processes. Leningrad: Gidrometeoizdat. Google Scholar
  75. Shaw, R. G., Geyer, C. J., Wagenius, S., Hangelbroek, H. H., & Etterson, J. R. (2008). Unifying life-history analyses for inference of fitness and population growth. Am. Nat., 172, E35–E47. CrossRefGoogle Scholar
  76. Shoresh, N., Hegreness, M., & Kishony, R. (2008). Evolution exacerbates the paradox of the plankton. PNAS USA, 105(34), 12365–12369. CrossRefGoogle Scholar
  77. Shumeiko, P. G., Osipov, V. I., & Kofman, G. B. (1994). Early detection of industrial emission impact on Scots Pine needles by composition of phenolic compounds. In R. G. Khlebopros (Ed.), Global & regional ecological problems (pp. 536–543). Krasnoyarsk: Krasnoyarsk State Technical University Publ. Google Scholar
  78. Sih, A., & Gleeson, S. K. (1995). A limits-oriented approach to evolutionary ecology. Trends Ecol. Evol., 10(9), 378–382. CrossRefGoogle Scholar
  79. Strygina, S. O., Dement’ev, S. N., Uskov, V. M., & Chernyshova, G. I. (2000). Dynamics of the system of correlations between physiological parameters in patients after myocardial infarction. In Mathematics computer, education. Proceedings of conference (Vol. 7, pp. 685–689), Moscow. Google Scholar
  80. Sudakov, K. V. (2004). Functional systems theory: a new approach to the question of the integration of physiological processes in the body. Neurosci. Behav. Physiol., 34(5), 495–500. MathSciNetCrossRefGoogle Scholar
  81. Svetlichnaia, G. N., Smirnova, E. V., & Pokidysheva, L. I. (1997). Correlational adaptometry as a method for evaluating cardiovascular and respiratory interaction. Fiziol. Chelov., 23(3), 58–62. PMID: 9264951. Google Scholar
  82. Thomson, J. D., Weiblen, G., Thomson, B. A., Alfaro, S., & Legendre, P. (1996). Untangling multiple factors in spatial distributions: lilies, gophers and rocks. Ecology, 77, 1698–1715. CrossRefGoogle Scholar
  83. Tilman, D. (1980). Resources: a graphical-mechanistic approach to competition and predation. Am. Nat., 116(3), 362–393. CrossRefGoogle Scholar
  84. Tilman, D. (1982). Resource competition and community structure. Princeton: Princeton University Press. Google Scholar
  85. van den Berg, H. A. (1998). Multiple nutrient limitation in unicellulars: reconstructing Liebig’s law. Math. Biosci., 149(1), 1–22. zbMATHCrossRefGoogle Scholar
  86. van der Ploeg, R. R., Böhm, W., & Kirkham, M. B. (1999). On the origin of the theory of mineral nutrition of plants and the law of the minimum. Soil Sci. Soc. Am. J., 63, 1055–1062. CrossRefGoogle Scholar
  87. Waxman, D., & Welch, J. J. (2005). Fisher’s microscope and Haldane’s ellipse. Am. Nat., 166, 447–457. CrossRefGoogle Scholar
  88. West-Eberhard, M. J. (2003). Developmental plasticity and evolution. Oxford: Oxford University Press. Google Scholar
  89. Wutzler, T., & Reichstein, M. (2008). Colimitation of decomposition by substrate and decomposers—a comparison of model formulations. Biogeosci. Discuss., 5, 163–190. CrossRefGoogle Scholar
  90. Zinn, M., Witholt, B., & Egli, T. (2004). Dual nutrient limited growth: models experimental observations, and applications. J. Biotechnol., 113(1–3), 263–279. CrossRefGoogle Scholar
  91. Zuckerkandl, E., & Villet, R. (1988). Concentration-affinity equivalence in gene regulation: convergence of genetic and environmental effects. PNAS USA, 85, 4784–4788. CrossRefGoogle Scholar

Copyright information

© Society for Mathematical Biology 2010

Authors and Affiliations

  • Alexander N. Gorban
    • 1
    Email author
  • Lyudmila I. Pokidysheva
    • 2
  • Elena V. Smirnova
    • 2
  • Tatiana A. Tyukina
    • 1
  1. 1.Centre for Mathematical ModellingUniversity of LeicesterLeicesterUK
  2. 2.Siberian Federal UniversityKrasnoyarskRussia

Personalised recommendations