Bulletin of Mathematical Biology

, Volume 73, Issue 7, pp 1645–1665 | Cite as

A Theory of Immunodominance and Adaptive Regulation

Original Article


Immunodominance refers to the phenomenon in which simultaneous T cell responses against multiple target epitopes organize themselves into distinct and reproducible hierarchies. In many cases, eliminating the response to the most dominant epitope allows responses to subdominant epitopes to expand more fully. The mechanism that drives immunodominance is still not well understood, although various hypotheses have been proposed. One of the more prevalent views is that immunodominance is driven by passive T cell competition for space on antigen presenting cells (APCs) or for access to specific MHC:epitope complexes on the surface of APCs. However, several experimental studies suggest that passive competition alone may not fully explain the robustness of immunodominance under physiological conditions or varying proportions of antigen-specific precursor T cells and APCs. These studies propose that a mechanism of active suppression among T cells gives rise to immunodominance.

In this work, we present the novel hypothesis that mutual suppression of simultaneous T cell responses results from the appearance of adaptive regulatory T cells (iTregs) during the course of the overall T cell expansion. We extend the mathematical model of T cell expansion proposed in Kim et al. (Bull. Math. Biol. 2009, doi:10.1007/s11538-009-9463-1) to consider multiple, concurrent T cell responses. The model is formulated as a system of independent feedback loops, in which antigen-specific T cell population produces a nonspecific feedback response. Our simulations show that the fastest response to expand gives rise to a de novo generated population of iTregs that induces a premature contraction in slower or weaker T cell responses, leading to a hierarchical expansion as observed in immunodominance. Furthermore, in some cases, removing the dominant T cell response allows previously subdominant responses to develop more fully.


Immunodominance T cell response Adaptive regulatory T cells Delay differential equations Competition model 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Antia, R., Bergstrom, C. T., Pilyugin, S. S., Kaech, S. M., & Ahmed, R. (2003). Models of CD8+ responses: 1. What is the antigen-independent proliferation program. J. Theor. Biol., 221(4), 585–598. MathSciNetCrossRefGoogle Scholar
  2. Borghans, J. A., Taams, L. S., Wauben, M. H., & de Boer, R. J. (1999). Competition for antigenic sites during T cell proliferation: a mathematical interpretation of in vitro data. Proc. Natl. Acad. Sci. USA, 96(19), 10782–10787. CrossRefGoogle Scholar
  3. Bousso, P., & Robey, E. (2003). Dynamics of CD8+ T cell priming by dendritic cells in intact lymph nodes. Nat. Immunol., 4(6), 579–585. CrossRefGoogle Scholar
  4. Catron, D. M., Itano, A. A., Pape, K. A., Mueller, D. L., & Jenkins, M. K. (2004). Visualizing the first 50 hr of the primary immune response to a soluble antigen. Immunity, 21(3), 341–347. CrossRefGoogle Scholar
  5. Chang, C. C., Ciubotariu, R., Manavalan, J. S., Yuan, J., Colovai, A. I., Piazza, F., Lederman, S., Colonna, M., Cortesini, R., Dalla-Favera, R., & Suciu-Foca, N. (2002). Tolerization of dendritic cells by T(S) cells: the crucial role of inhibitory receptors ILT3 and ILT4. Nat. Immunol., 3(3), 237–243. CrossRefGoogle Scholar
  6. De Boer, R. J., & Perelson, A. S. (1994). T cell repertoires and competitive exclusion. J. Theor. Biol., 169(4), 375–390. CrossRefGoogle Scholar
  7. De Boer, R. J., & Perelson, A. S. (1995). Toward a general function describing T cell proliferation. J. Theor. Biol., 175(4), 567–576. CrossRefGoogle Scholar
  8. De Boer, R. J., Oprea, M., Antia, R., Murali-Krishna, K., Ahmed, R., & Perelson, A. S. (2001). Recruitment times, proliferation, and apoptosis rates during the CD8(+) T-cell response to lymphocytic choriomeningitis virus. J. Virol., 75, 10663–10669. CrossRefGoogle Scholar
  9. De Boer, R. J., Homann, D., & Perelson, A. S. (2003). Different dynamics of CD4+ and CD8+ T cell responses during and after acute lymphocytic choriomeningitis virus infection. J. Immunol., 171(8), 3928–3935. Google Scholar
  10. Grufman, P., Wolpert, E. Z., Sandberg, J. K., & Karre, K. (1999). T cell competition for the antigen-presenting cell as a model for immunodominance in the cytotoxic T lymphocyte response against minor histocompatibility antigens. Eur. J. Immunol., 29(7), 2197–2204. CrossRefGoogle Scholar
  11. Handel, A., & Antia, R. (2008). A simple mathematical model helps to explain the immunodominance of CD8 T cells in influenza A virus infections. J. Virol., 82(16), 7768–7772. CrossRefGoogle Scholar
  12. Kaech, S. M., & Ahmed, R. (2001). Memory CD8+ T cell differentiation: initial antigen encounter triggers a developmental program in naïve cells. Nat. Immunol., 2(5), 415–422. Google Scholar
  13. Kedl, R. M., Rees, W. A., Hildeman, D. A., Schaefer, B., Mitchell, T., Kappler, J., & Marrack, P. (2000). T cells compete for access to antigen-bearing antigen-presenting cells. J. Exp. Med., 192(8), 1105–1113. CrossRefGoogle Scholar
  14. Kedl, R. M., Kappler, J. W., & Marrack, P. (2003). Epitope dominance, competition and T cell affinity maturation. Curr. Opin. Immunol., 15(1), 120–127. CrossRefGoogle Scholar
  15. Kim, P. S., Lee, P. P., & Levy, D. Emergent group dynamics governed by regulatory cells produce a robust primary T cell response. Bull. Math. Biol. doi:10.1007/s11538-009-9463-1. Published on-line Dec. 2009.
  16. León, K., Lage, A., & Carneiro, J. (2007a). How regulatory CD25+CD4+ T cells impinge on tumor immunobiology? on the existence of two alternative dynamical classes of tumors. J. Theor. Biol., 247(1), 122–137. CrossRefGoogle Scholar
  17. León, K., Lage, A., & Carneiro, J. (2007b). How regulatory CD25+CD4+ T cells impinge on tumor immunobiology: the differential response of tumors to therapies. J. Immunol., 179(9), 5659–5668. Google Scholar
  18. Manca, F. (1992). Selective functional depletion of HIV gp120 peptides complexed with MHC from antigen-presenting cells engaged with specific T lymphocytes. J. Immunol., 149(3), 796–800. Google Scholar
  19. Mercado, R., Vijh, S., Allen, S. E., Kerksiek, K., Pilip, I. M., & Pamer, E. G. (2000). Early programming of T cell populations responding to bacterial infection. J. Immunol., 165(12), 6833–6839. Google Scholar
  20. Miller, M. J., Hejazi, A. S., Wei, S. H., Cahalan, M. D., & Parker, I. (2004a). T cell repertoire scanning is promoted by dynamic dendritic cell behavior and random T cell motility in the lymph node. Proc. Natl. Acad. Sci. USA, 101(4), 998–1003. CrossRefGoogle Scholar
  21. Miller, M. J., Safrina, O., Parker, I., & Cahalan, M. D. (2004b). Imaging the single cell dynamics of CD4+ T cell activation by dendritic cells in lymph nodes. J. Exp. Med., 200(7), 847–856. CrossRefGoogle Scholar
  22. Nowak, M. A. (1996). Immune responses against multiple epitopes: a theory for immunodominance and antigenic variation. Semin. Virol., 7, 83–92. CrossRefGoogle Scholar
  23. Probst, H. C., Dumrese, T., & van den Broek, M. F. (2002). Cutting edge: competition for APC by CTLs of different specificities is not functionally important during induction of antiviral responses. J. Immunol., 168(11), 5387–5391. Google Scholar
  24. Razvi, E. S., Jiang, Z., Woda, B. A., & Welsh, R. M. (1995). Lymphocyte apoptosis during the silencing of the immune response to acute viral infections in normal, lpr, and Bcl-2-transgenic mice. Am. J. Pathol., 147(1), 79–91. Google Scholar
  25. Renno, T., Attinger, A., Locatelli, S., Bakker, T., Vacheron, S., & MacDonald, H. R. (1999). Cutting edge: apoptosis of superantigen-activated T cells occurs preferentially after a discrete number of cell divisions in vivo. J. Immunol., 162(11), 6312–6315. Google Scholar
  26. Roy-Proulx, G., Meunier, M. C., Lanteigne, A. M., Brochu, S., & Perreault, C. (2001). Immunodomination results from functional differences between competing CTL. Eur. J. Immunol., 31(8), 2284–2292. CrossRefGoogle Scholar
  27. Scherer, A., & Bonhoeffer, S. (2005). Epitope down-modulation as a mechanism for the coexistence of competing T-cells. J. Theor. Biol., 233(3), 379–390. CrossRefGoogle Scholar
  28. Scherer, A., Salathé, M., & Bonhoeffer, S. (2006). High epitope expression levels increase competition between T cells. PLoS Comput. Biol., 2(8), e109. CrossRefGoogle Scholar
  29. Sercarz, E. E., Lehmann, P. V., Ametani, A., Benichou, G., Miller, A., & Moudgil, K. (1993). Dominance and crypticity of T cell antigenic determinants. Annu. Rev. Immunol., 11, 729–766. CrossRefGoogle Scholar
  30. Surh, C. D., & Sprent, J. (2008). Homeostasis of naive and memory T cells. Immunity, 29, 848–862. CrossRefGoogle Scholar
  31. Taams, L. S., van Rensen, A. J., Poelen, M. C., van Els, C. A., Besseling, A. C., Wagenaar, J. P., van Eden, W., & Wauben, M. H. (1998). Anergic T cells actively suppress T cell responses via the antigen-presenting cell. Eur. J. Immunol., 28(9), 2902–2912. CrossRefGoogle Scholar
  32. Thomas, P. G., Brown, S. A., Keating, R., Yue, W., Morris, M. Y., So, J., Webby, R. J., & Doherty, P.C. (2007). Hidden epitopes emerge in secondary influenza virus-specific CD8+ T cell responses. J. Immunol., 178(5), 3091–3098. Google Scholar
  33. Trimble, L. A., & Lieberman, J. (1998). Circulating CD8 T lymphocytes in human immunodeficiency virus-infected individuals have impaired function and downmodulate CD3 zeta, the signalling chain of the T-cell receptor complex. Blood, 91(2), 585–594. Google Scholar
  34. van der Most, R. G., Murali-Krishna, K., Lanier, J. G., Wherry, E. J., Puglielli, M. T., Blattman, J. N., Sette, A., & Ahmed, R. (2003). Changing immunodominance patterns in antiviral CD8 T-cell responses after loss of epitope presentation or chronic antigenic stimulation. Virology, 315(1), 93–102. CrossRefGoogle Scholar
  35. van Stipdonk, M. J., Hardenberg, G., Bijker, M. S., Lemmens, E. E., Droin, N. M., Green, D. R., & Schoenberger, S. P. (2003). Dynamic programming of CD8+ T lymphocyte responses. Nat. Immunol., 4(4), 361–365. CrossRefGoogle Scholar
  36. Vijh, S., Pilip, I. M., & Pamer, E. G. (1999). Noncompetitive expansion of cytotoxic T lymphocytes specific for different antigens during bacterial infection. Infect. Immun., 67, 1303–1309. Google Scholar
  37. Walker, M. R., Carson, B. D., Nepom, G. T., Ziegler, S. F., & Buckner, J. H. (2005). De novo generation of antigen-specific CD4+CD25+ regulatory T cells from human CD4+CD25- cells. Proc. Natl. Acad. Sci. USA, 102(11), 4103–4108. CrossRefGoogle Scholar
  38. Weidt, G., Utermohlen, O., Heukeshoven, J., Lehmann-Grube, F., & Deppert, W. (1998). Relationship among immunodominance of single CD8+ T cell epitopes, virus load, and kinetics of primary antiviral CTL response. J. Immunol., 160, 2923–2931. Google Scholar
  39. Wodarz, D., & Thomsen, A. R. (2005). Effect of the CTL proliferation program on virus dynamics. Int. Immunol., 17(9), 1269–1276. CrossRefGoogle Scholar
  40. Yang, Y., Kim, D., & Fathman, C. G. (1998). Regulation of programmed cell death following T cell activation in vivo. Int. Immunol., 10(2), 175–183. CrossRefGoogle Scholar

Copyright information

© Society for Mathematical Biology 2010

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of UtahSalt Lake CityUSA
  2. 2.Division of Hematology, Department of MedicineStanford UniversityStanfordUSA
  3. 3.Department of Mathematics and Center for Scientific Computation and Mathematical Modeling (CSCAMM)University of MarylandCollege ParkUSA

Personalised recommendations