Advertisement

Bulletin of Mathematical Biology

, Volume 73, Issue 3, pp 658–682 | Cite as

Cell Physician: Reading Cell Motion

A Mathematical Diagnostic Technique Through Analysis of Single Cell Motion
  • Hasan Coskun
  • Huseyin Coskun
Original Article

Abstract

Cell motility is an essential phenomenon in almost all living organisms. It is natural to think that behavioral or shape changes of a cell bear information about the underlying mechanisms that generate these changes. Reading cell motion, namely, understanding the underlying biophysical and mechanochemical processes, is of paramount importance. The mathematical model developed in this paper determines some physical features and material properties of the cells locally through analysis of live cell image sequences and uses this information to make further inferences about the molecular structures, dynamics, and processes within the cells, such as the actin network, microdomains, chemotaxis, adhesion, and retrograde flow. The generality of the principals used in formation of the model ensures its wide applicability to different phenomena at various levels. Based on the model outcomes, we hypothesize a novel biological model for collective biomechanical and molecular mechanism of cell motion.

Keywords

Cell motility Inverse problem Material parameters Actin network Chemotaxis Lateral signal diffusion Microdomains Membrane ruffling Adhesion formation Retrograde flow 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

Annotated PtK1 epithelial cell membrane motion shows the relation between displacement and polymerization or depolymerization (MOV 794 KB)

Annotated PtK1 epithelial cell membrane local motion (i=47,…,53) shows the relation between displacement and polymerization or depolymerization (MOV 457 KB)

Annotated PtK1 epithelial cell (lamellipodium) membrane motion (MOV 1.26 MB)

Annotated PtK1 epithelial cell lamella (transition) line motion (MOV 1.06 MB)

Annotated PtK1 epithelial cell treated with CytD (MOV 1.05 MB)

Annotated movie of a neutrophil chasing bacteria (MOV 703 KB)

Annotated movie of a keratocyte (MOV 319 KB)

References

  1. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., & Walter, P. (2002). Molecular biology of the cell. New York: Garland. Google Scholar
  2. Alt, W., & Dembo, M. (1999). Cytoplasm dynamics and cell motion: two-phase flow models. Math. Biosci., 156, 207–228. zbMATHCrossRefGoogle Scholar
  3. Bottino, D., Mogilner, A., Roberts, T., Stewart, M., & Oster, G. (2002). How nematode sperm crawl. J. Cell Sci., 115, 367–384. Google Scholar
  4. Bray, D. (2001). Cell movements. New York: Garland. Google Scholar
  5. Caille, N., Thoumine, O., Tardy, Y., & Meister, J. J. (2002). Contribution of the nucleus to the mechanical properties of endothelial cells. J. Biomech., 35(2), C177–C188. CrossRefGoogle Scholar
  6. Campi, G., Varma, R., & Dustin, M. L. (2005). Actin and agonist mhc-peptide complex-dependent t cell receptor microclusters as scaffolds for signaling. J. Exp. Med., 202(8), 1031–1036. CrossRefGoogle Scholar
  7. Coskun, H. (2006). Mathematical models for cell movements and model based inverse problems. Ph.D. thesis, University of Iowa. Google Scholar
  8. Coskun, H. (2009). A continuum model with free boundary formulation and the inverse problem for ameboid cell motility. Preprint. Google Scholar
  9. Coskun, H., Li, Y., & Mackey, M. A. (2007). Ameboid cell motility: A model and inverse problem, with an application to live cell imaging data. J. Theor. Biol., 244(2), 169–179. MathSciNetCrossRefGoogle Scholar
  10. Dobereiner, H. G., Dubin-Thaler, B. J., Hofman, J. M., Xenias, H. S., Sims, T. N., Giannone, G., Dustin, M. L., Wiggins, C. H., & Sheetz, M. P. (2006). Lateral membrane waves constitute a universal dynamic pattern of motile cells. Phys. Rev. Lett., 97(3), 038102. CrossRefGoogle Scholar
  11. Defilippi, P., Olivo, C., Venturino, M., Dolce, L., Silengo, L., & Tarone, G. (1999). Actin cytoskeleton organization in response to integrin-mediated adhesion. Microsc. Res. Tech., 47, 67–78. CrossRefGoogle Scholar
  12. DiMilla, P. A., Barbee, K., & Lauffenburger, D. A. (1991). Mathematical model for the effects of adhesion and mechanics on cell migration speed. Biophys. J., 60, 15–37. CrossRefGoogle Scholar
  13. Dong, C., & Skalak, R. (1992). Leukocyte deformability: finite-element modeling of large viscoelastic deformation. J. Theor. Biol., 158, 173–193. CrossRefGoogle Scholar
  14. Fournier, M. F., Sauser, R., Ambrosi, D., Meister, J. J., & Verkhovsky, A. B. (2010). Force transmission in migrating cells. J. Cell Biol., 188(2), 287–297. CrossRefGoogle Scholar
  15. Giannone, G., Dubin-Thaler, B. J., Rossier, O., Cai, Y., Chaga, O., Jiang, G., Beaver, W., Dobereiner, H. G., Freund, Y., Borisy, G., & Sheetz, M. P. (2007). Lamellipodial actin mechanically links myosin activity with adhesion-site formation. Cell, 128(3), 561–575. CrossRefGoogle Scholar
  16. Glading, A., Lauffenburger, D. A., & Wells, A. (2002). Cutting to the chase: calpain proteases in cell motility. Trends Cell Biol., 12(1), 46–54. CrossRefGoogle Scholar
  17. Gupton, S. L., Anderson, K. L., Kole, T. P., Fischer, R. S., Ponti, A., Hitchcock-DeGregori, S. E., Danuser, G., Fowler, V. M., Wirtz, D., Hanein, D., & Waterman-Storer, C. M. (2005). Cell migration without a lamellipodium. J. Cell Biol., 168(4), 619–631. CrossRefGoogle Scholar
  18. Kass, M., Witkin, A., & Terzopoulos, D. (1987). Snakes: Active contour models. Int. J. Comput. Vis., 1, 321–331. CrossRefGoogle Scholar
  19. Koestler, S. A., Auinger, S., Vinzenz, M., Rottner, K., & Small, J. V. (2008). Differentially oriented populations of actin filaments generated in lamellipodia collaborate in pushing and pausing at the cell front. Nat. Cell Biol., 10(3), 306–313. CrossRefGoogle Scholar
  20. Krauss, K., & Altevogt, P. (1999). Integrin leukocyte function-associated antigen-1-mediated cell binding can be activated by clustering of membrane rafts. J. Biol. Chem., 274(52), 36,921–36,927. CrossRefGoogle Scholar
  21. Kuusela, E., & Alt, W. (2009). Continuum model of cell adhesion and migration. J. Math. Biol., 58(1), 135–161. MathSciNetzbMATHCrossRefGoogle Scholar
  22. Laude, A. J., & Prior, I. A. (2004). Plasma membrane microdomains: Organization, function and trafficking (review). Mol. Membr. Biol., 21(3), 193–205. CrossRefGoogle Scholar
  23. Lee, J., Leonard, M., Oliver, T., Ishihara, A., & Jacobson, K. (1994). Traction forces generated by locomoting keratocytes. J. Cell Biol., 127(6), 1957–1964. CrossRefGoogle Scholar
  24. Lekka, M., Laidler, P., Gil, D., Lekki, J., Stachura, Z., & Hrynkiewicz, A. Z. (1999). Elasticity of normal and cancerous human bladder cells studied by scanning force microscopy. Eur. Biophys. J., 28(4), 312–316. CrossRefGoogle Scholar
  25. Machacek, M., & Danuser, G. (2006). Morphodynamic profiling of protrusion phenotypes. Biophys. J., 90(4), 1439–1452. CrossRefGoogle Scholar
  26. Marella, S. V., & Udaykumar, H. S. (2004). Computational analysis of the deformability of leukocytes modeled with viscous and elastic structural components. Phys. Fluids, 16(2), 244–264. CrossRefGoogle Scholar
  27. Mitchell, J. S., Kanca, O., & McIntyre, B. W. (2002). Lipid microdomain clustering induces a redistribution of antigen recognition and adhesion molecules on human t lymphocytes. J. Immunol., 168(6), 2737–2744. Google Scholar
  28. Mogilner, A., & Edelstein-Keshet, L. (2002). Regulation of actin dynamics in rapidly moving cells: a quantitative analysis. Biophys. J., 83, 1237–1258. CrossRefGoogle Scholar
  29. Mogilner, A., Marland, E., & Bottino, D. (2000). A minimal model of locomotion applied to the steady gliding movement of fish keratocyte cells. In P. K. Maini & H. G. Othmer (Eds.), IMA vol. math. appl., Frontiers in application of mathematics : Vol. 121. Mathematical models for biological pattern formation (pp. 269–294). New York: Springer. Google Scholar
  30. Mogilner, A., & Verzi, D. (2003). A simple 1-D physical model for the crawling nematode sperm cell. J. Stat. Phys., 110, 1169–1189. zbMATHCrossRefGoogle Scholar
  31. Pollard, T., Blanchoin, L., & Mullins, R. D. (2000). Biophysics of actin filament dynamics in nonmuscle cells. Ann. Rev. Biophys. Biomol. Struct., 29, 545–576. CrossRefGoogle Scholar
  32. Ponti, A., Machacek, M., Gupton, S. L., Waterman-Storer, C. M., & Danuser, G. (2004). Two distinct actin networks drive the protrusion of migrating cells. Science, 305(5691), 1782–1786. CrossRefGoogle Scholar
  33. Ream, R. A., Theriot, J. A., & Somero, G. N. (2003). Influences of thermal acclimation and acute temperature change on the motility of epithelial wound-healing cells (keratocytes) of tropical, temperate and antarctic fish. J. Exp. Biol., 206(24), 4539–4551. CrossRefGoogle Scholar
  34. Reynolds, A. R., Tischer, C., Verveer, P. J., Rocks, O., & Bastiaens, P. I. H. (2003). Egfr activation coupled to inhibition of tyrosine phosphatases causes lateral signal propagation. Nat. Cell Biol., 5(5), 447–453. CrossRefGoogle Scholar
  35. Rubinstein, B., Fournier, M. F., Jacobson, K., Verkhovsky, A. B., & Mogilner, A. (2009). Actin-myosin viscoelastic flow in the keratocyte lamellipod. Biophys. J., 97(7), 1853–1863. CrossRefGoogle Scholar
  36. Sacan, A., Ferhatosmanoglu, H., & Coskun, H. (2008). Celltrack: an open-source software for cell tracking and motility analysis. Bioinformatics, 24(14), 1647–1649. CrossRefGoogle Scholar
  37. Schmid-Schönbein, G., Kosawada, T., Skalak, R., & Chien, S. (1995). Membrane model of endothelial cells and leukocytes. A proposal for the origin of a cortical stress. J. Biomech. Eng., 117, 171–178. CrossRefGoogle Scholar
  38. Simons, K., & Toomre, D. (2000). Lipid rafts and signal transduction. Nat. Rev. Mol. Cell Biol., 1(1), 31–39. CrossRefGoogle Scholar
  39. Vallotton, P., & Small, J. V. (2009). Shifting views on the leading role of the lamellipodium in cell migration: speckle tracking revisited. J. Cell Sci., 122(12), 1955–1958. CrossRefGoogle Scholar
  40. Vallotton, P., Danuser, G., Bohnet, S., Meister, J. J., & Verkhovsky, A. B. (2005). Tracking retrograde flow in keratocytes: News from the front. Mol. Biol. Cell, 16(3), 1223–1231. CrossRefGoogle Scholar
  41. Ward, K., Li, W., Zimmer, S., & Davis, T. (1991). Viscoelastic properties of transformed cells: role in tumor cell progression and metastasis formation. Biorheology, 28(3–4), 301–313. Google Scholar
  42. Wottawah, F., Schinkinger, S., Lincoln, B., Ebert, S., Mooller, K., Sauer, F., Travis, K., & Guck, J. (2005). Characterizing single suspended cells by optorheology. Acta Biomater., 1(3), 263–271. CrossRefGoogle Scholar
  43. Yanai, M., Butler, J. P., Suzuki, T., Sasaki, H., & Higuchi, H. (2004). Regional rheological differences in locomoting neutrophils. Am. J. Physiol. Cell Physiol., 287, C603–C611. CrossRefGoogle Scholar
  44. Yeung, A., & Evans, E. (1989). Cortical shell-liquid core model for passive flow of liquid-like spherical cells into micropipets. Biophys. J., 56, 139–149. CrossRefGoogle Scholar

Copyright information

© Society for Mathematical Biology 2010

Authors and Affiliations

  1. 1.Department of MathematicsTexas A&M University-CommerceCommerceUSA
  2. 2.Department of MathematicsOhio State UniversityColumbusUSA
  3. 3.Mathematical Bioscience InstituteOhio State UniversityColumbusUSA

Personalised recommendations