Bulletin of Mathematical Biology

, Volume 73, Issue 2, pp 266–284 | Cite as

Nonlinear Dynamics of Emotion-Cognition Interaction: When Emotion Does not Destroy Cognition?

  • Valentin Afraimovich
  • Todd Young
  • Mehmet K. Muezzinoglu
  • Mikhail I. Rabinovich
Open Access
Original Article

Abstract

Emotion (i.e., spontaneous motivation and subsequent implementation of a behavior) and cognition (i.e., problem solving by information processing) are essential to how we, as humans, respond to changes in our environment. Recent studies in cognitive science suggest that emotion and cognition are subserved by different, although heavily integrated, neural systems. Understanding the time-varying relationship of emotion and cognition is a challenging goal with important implications for neuroscience. We formulate here the dynamical model of emotion-cognition interaction that is based on the following principles: (1) the temporal evolution of cognitive and emotion modes are captured by the incoming stimuli and competition within and among themselves (competition principle); (2) metastable states exist in the unified emotion-cognition phase space; and (3) the brain processes information with robust and reproducible transients through the sequence of metastable states. Such a model can take advantage of the often ignored temporal structure of the emotion-cognition interaction to provide a robust and generalizable method for understanding the relationship between brain activation and complex human behavior. The mathematical image of the robust and reproducible transient dynamics is a Stable Heteroclinic Sequence (SHS), and the Stable Heteroclinic Channels (SHCs). These have been hypothesized to be possible mechanisms that lead to the sequential transient behavior observed in networks. We investigate the modularity of SHCs, i.e., given a SHS and a SHC that is supported in one part of a network, we study conditions under which the SHC pertaining to the cognition will continue to function in the presence of interfering activity with other parts of the network, i.e., emotion.

Keywords

Metastability Transients 

References

  1. Abeles, M., Bergman, H., Gat, I., Meilijson, I., Seidemann, E., Tishby, N., et al. (1995). Cortical activity flips among quasi-stationary states. Proc. Natl. Acad. Sci., 92, 8616–8620. CrossRefGoogle Scholar
  2. Abott, L. F. (2008). Theoretical neuroscience rising. Neuron, 60, 489–495. CrossRefGoogle Scholar
  3. Adolphs, R. (2008). Fear, faces, and the human amygdala. Curr. Opin. Neurobiol., 18, 166–172. CrossRefGoogle Scholar
  4. Afraimovich, V. S., Rabinovich, M. I., & Varona, P. (2004). Heteroclinic contours in neural ensembles and the winnerless competition principle. Int. J. Bifurc. Chaos, 14, 1195–1208. MathSciNetMATHCrossRefGoogle Scholar
  5. Afraimovich, V. S., Zhigulin, V. P., & Rabinovich, M. I. (2004). On the origin of reproducible sequential activity in neural circuits. Chaos, 14, 1123–1129. MathSciNetMATHCrossRefGoogle Scholar
  6. Aron, A. R. (2007). The neural basis of inhibition in cognitive control. Neuroscientist, 13, 214–228. CrossRefGoogle Scholar
  7. Bechara, A., Damasio, H., & Damasio, A. R. (2000). Emotion, decision making and the orbitofrontal cortex. Cerebral Cortex, 10, 295–307. CrossRefGoogle Scholar
  8. beim Graben, P., & Potthast, R. (2009). Inverse problems in dynamic cognitive modeling. Chaos, 19, 015103. MathSciNetCrossRefGoogle Scholar
  9. Buzsaki, G. (2006). Rhythms of the brain. New York: Oxford University Press. MATHCrossRefGoogle Scholar
  10. Buzsaki, G., & Draguhn, A. (2004). Neuronal oscillations in cortical networks. Science, 304, 1926–1929. CrossRefGoogle Scholar
  11. Chen, Y., Bressler, S. L., & Ding, M. (2009). Dynamics on networks: assessing functional connectivity with Granger causality. Comput. Math. Organ. Theor., 15, 329–350. CrossRefGoogle Scholar
  12. Fales, C. L., Barch, D. B., Rundle, M. M., Mintun, M. A., Snyder, A. Z., Cohen, J. D., et al. (2008). Altered emotional interference processing in affective and cognitive-control brain circuitry in major depression. Biol. Psychiatry, 63, 377–384. CrossRefGoogle Scholar
  13. Fenicchel, N. (1971). Persistence and smoothness of invariant manifolds for flows. Indiana Univ. Math J., 21, 193–226. MathSciNetCrossRefGoogle Scholar
  14. Fingelkurts, A. A., & Fingelkurts, A. A. (2006). Timing in cognition and EEG brain dynamics: discreteness versus continuity. Cogn. Process., 7, 135–162. CrossRefGoogle Scholar
  15. Fox, M. D., Snyder, A. Z., Vincent, J. L., Corbetta, M., van Essen, D., & Raichle, M. E. (2005). The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc. Natl. Acad. Sci. USA, 102, 9673–9678. CrossRefGoogle Scholar
  16. Fox, M. D., Snyder, A. Z., Vincent, J. L., & Raichle, M. E. (2007). Intrinsic fluctuations within cortical systems account for intertrial variability in human behavior. Neuron, 56, 171–184. CrossRefGoogle Scholar
  17. Friston, K. J. (1997). Transients, metastability, and neuronal dynamics. NeuroImage, 5, 164–171. CrossRefGoogle Scholar
  18. Friston, K. J. (2000). The labile brain. I. Neuronal transients and nonlinear coupling. Philos. Trans. R. Soc. Lond. B, Biol. Sci., 355, 215–236. CrossRefGoogle Scholar
  19. Friston, K. J., Harrison, L., & Penny, W. (2003). Dynamic causal modelling. NeuroImage, 19, 1273–1302. CrossRefGoogle Scholar
  20. Gray, J. R., Braver, T. S., & Raichle, M. E. (2002). Integration of emotion and cognition in the lateral prefrontal cortex. Proc. Natl. Acad. Sci. USA, 99, 4115–4120. CrossRefGoogle Scholar
  21. Hale, J. (1969). Ordinary differential equations. New York: Interscience. MATHGoogle Scholar
  22. Hirsh, M. W., Pugh, C. C., & Shub, M. (1977). Lecture notes in math. : Vol. 583. Invariant manifolds. New York: Springer. Google Scholar
  23. Huber, M. T., Braun, H. A., & Krieg, J.-C. (2001). On the impact of episode sensitization on the course of recurrent affective disorders. J. Pshychiatric Res., 35, 49–57. CrossRefGoogle Scholar
  24. Huber, M. T., Braun, H. A., & Krieg, J.-C. (2004). Recurrent affective disorders: nonlinear and stochastic models of disease dynamics. Int. J. Bifurc. Chaos, 14, 635–652. MathSciNetMATHCrossRefGoogle Scholar
  25. Ito, J., Nikolaev, A. R., & van Leeuwen, C. (2007). Dynamics of spontaneous transitions between global brain states. Hum. Brain Mapp., 28, 904–913. CrossRefGoogle Scholar
  26. Jones, L. M., Fonranini, A., Sadacca, B. F., Miller, P., & Katz, D. B. (2007). Natural stimuli evoke dynamic sequences of states in sensory cortical ensembles. Proc. Natl. Acad. Sci., 104, 18772–18777. CrossRefGoogle Scholar
  27. Just, M. A., & Varma, S. (2007). The organization of thinking: What functional brain imaging reveals about theneuroarchitecture of complex cognition. Cogn. Affect. Behav. Neurosci., 7, 153–191. CrossRefGoogle Scholar
  28. Kaplan, A. Y., & Shishkin, S. L. (2000). Application of the change-point analysis to the investigation of the brain’s electrical activity. In B. E. Brodsky & B. S. Darkhovsky (Eds.), Nonparametric statistical diagnosis: problems and methods (pp. 333–388). Dordrecht: Kluwer Academic. Google Scholar
  29. Kelso, J. A. S. (1995). The self-organization of brain and behavior. Cambridge: MIT Press. Google Scholar
  30. Kifer, Y. (1981). The exit problem for small random perturbations of dynamical systems with hyperbolic fixed point. Isr. J. Math., 40, 74–96. MathSciNetCrossRefGoogle Scholar
  31. Levi, R., Varona, P., Arshavsky, Y. I., Rabinovich, M. I., & Selverston, A. I. (2004). Dual sensory-motor function for a molluskan statocyst network. J. Neurophysiol., 91, 336–345. CrossRefGoogle Scholar
  32. Lewis, M., Haviland-Jones, J. M., & Barrett, L. F. (2008). Handbook of emotions (3rd ed.). New York: Guilford Press. Google Scholar
  33. Lewis, M. D. (2005). Bridging emotion theory and neurobiology through dynamic systems modeling. Behav. Brain Sci., 28, 169–245. Google Scholar
  34. Muezzinoglu, M. K., Tristan, I., Huerta, R., Afraimovich, V., & Rabinovich, M. I. (2010). Transients versus attractors in complex networks. Int. J. Bifurc. Chaos, 20, 169–245. MathSciNetGoogle Scholar
  35. Murray, J. D. (2002). Mathematical biology: I. An introduction (3rd ed.). New York: Springer. Google Scholar
  36. Oullier, O., & Kelso, J. A. (2006). Neuroeconomics and the metastable brain. Trends Cogn., 10, 353–354. CrossRefGoogle Scholar
  37. Pessoa, L. (2008). On the relationship between emotion and cognition. Nature Rev. Neurosci., 9, 148–158. CrossRefGoogle Scholar
  38. Phelps, E. (2006). Emotion and cognition: Insights from studies of the human amygdala. Annu. Rev. Psychol., 57, 27–53. CrossRefGoogle Scholar
  39. Port, R. F., & van Gelder, T. (Eds.) (1995). Mind as motion: explorations in the dynamics of cognition. Cambridge: MIT Press. Google Scholar
  40. Rabinovich, M. I., Huerta, R., & Laurent, G. (2008). Transient dynamics for neural processing. Science, 321, 48–50. CrossRefGoogle Scholar
  41. Rabinovich, M. I., Huerta, R., Varona, P., & Afraimovich, V. S. (2008). Transient cognitive dynamics, metastability, and decision making. PLoS Computational Biology, 4, e1000072. MathSciNetCrossRefGoogle Scholar
  42. Rabinovich, M. I., Varona, P., Selverston, A. I., & Abarbanel, H. D. I. (2006). Dynamical principles in neuroscience. Rev. Modern Phys., 78, 1213. CrossRefGoogle Scholar
  43. Rabinovich, M. I., Volkovskii, A., Lecanda, P., Huerta, R., Abarbanel, H. D. I., & Laurent, G. (2001). Dynamical encoding by networks of competing neuron groups: winnerless competition. Phys. Rev. Lett., 87, 068102. CrossRefGoogle Scholar
  44. Reis, D. L., Shamosh, N. A., Kiehl, K. A., Brackett, M., Salovey, P., & Gray, J. R. (2007). Individual differences in emotional intelligence predict prefrontal cortical activity during social reasoning. NeuroImage, 35, 1385–1391. CrossRefGoogle Scholar
  45. Sasaki, T., Matsuki, N., & Ikegaya, Y. (2007). Metastability of active CA3 networks. J. Neurosci., 27, 517–528. CrossRefGoogle Scholar
  46. Scherer, K. R. (1993). Neuroscience projections to current debates in emotion psychology. Cognit. Emotion, 7, 1–41. CrossRefGoogle Scholar
  47. Shilnikov, L. P., Shilnikov, A. L., Turaev, D. V., & Chua, L. O. (1998). Methods of qualitative theory in nonlinear dynamics (Part 1). Singapore: World Scientific. CrossRefGoogle Scholar
  48. Shilnikov, L. P., Shilnikov, A. L., Turaev, D. V., & Chua, L. O. (2001). Methods of qualitative theory in nonlinear dynamics (Part 2). Singapore: World Scientific. CrossRefGoogle Scholar
  49. Stone, E., & Holmes, P. (1990). Random perturbations of heteroclinic attractors. SIAM J. Appl. Math., 50, 726–743. MathSciNetMATHCrossRefGoogle Scholar
  50. Vogels, T. P., Rajan, K., & Abott, L. F. (2005). Neural network dynamics. Annu. Rev. Neurosci., 28, 357–376. CrossRefGoogle Scholar
  51. Werner, G. (2007). Metastability, criticality and phase transitions in brain and its models. Biosystems, 90, 496–508. CrossRefGoogle Scholar

Copyright information

© The Author(s) 2010

Authors and Affiliations

  • Valentin Afraimovich
    • 1
  • Todd Young
    • 2
  • Mehmet K. Muezzinoglu
    • 3
  • Mikhail I. Rabinovich
    • 3
  1. 1.IICO-UASLPSan Luis PotosiMexico
  2. 2.Department of MathematicsOhio UniversityAthensUSA
  3. 3.BioCircuits InstituteUniversity of California San DiegoLa JollaUSA

Personalised recommendations