Bulletin of Mathematical Biology

, Volume 73, Issue 9, pp 1969–2012

Survival Analysis of Stochastic Competitive Models in a Polluted Environment and Stochastic Competitive Exclusion Principle

Original Article

Abstract

Stochastic competitive models with pollution and without pollution are proposed and studied. For the first system with pollution, sufficient criteria for extinction, nonpersistence in the mean, weak persistence in the mean, strong persistence in the mean, and stochastic permanence are established. The threshold between weak persistence in the mean and extinction for each population is obtained. It is found that stochastic disturbance is favorable for the survival of one species and is unfavorable for the survival of the other species. For the second system with pollution, sufficient conditions for extinction and weak persistence are obtained. For the model without pollution, a partial stochastic competitive exclusion principle is derived.

Keywords

Competitive model Polluted environment Stochastic disturbance Stochastic competitive exclusion principle 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alonso, D., Pascual, M., & McKane, J. A. (2007). Stochastic Amplification in Epidemics. J. R. Soc. Interface, 4, 575–582. CrossRefGoogle Scholar
  2. Arnold, L. (1974). Stochastic differential equations: theory and applications. Wiley: New York. MATHGoogle Scholar
  3. Bahar, A., & Mao, X. (2004). Stochastic delay Lotka–Volterra model. J. Math. Anal. Appl., 292, 364–380. MathSciNetMATHCrossRefGoogle Scholar
  4. Bandyopadhyay, M., & Chattopadhyay, J. (2005). Ratio-dependent predator-prey model: effect of environmental fluctuation and stability. Nonlinearity, 18, 913–936. MathSciNetMATHCrossRefGoogle Scholar
  5. Beddington, J. R., & May, R. M. (1977). Harvesting natural populations in a randomly fluctuating environment. Science, 197, 463–465. CrossRefGoogle Scholar
  6. Braumann, C. A. (2002). Variable effort harvesting models in random environments: generalization to density-dependent noise intensities. Math. Biosci., 177& 178, 229–245. MathSciNetCrossRefGoogle Scholar
  7. Braumann, C. A. (2007). Itô versus Stratonovich calculus in random population growth. Math. Biosci., 206, 81–107. MathSciNetMATHCrossRefGoogle Scholar
  8. Braumann, C. A. (2008). Growth and extinction of populations in randomly varying environments. Comput. Math. Appl., 56, 631–644. MathSciNetMATHCrossRefGoogle Scholar
  9. Cattiaux, P. Méléard, S. (2009). Competitive or weak cooperative stochastic Lotka–Volterra systems conditioned on non-extinction. J. Math. Biol., doi: 10.1007/s00285-009-0285-4. Google Scholar
  10. Chattopadhyay, J. (1996). Effect of toxic substances on a two species competitive system. Ecol. Model., 84, 287–289. CrossRefGoogle Scholar
  11. Du, N. H., & Sam, V. H. (2006). Dynamics of a stochastic Lotka–Volterra model perturbed by white noise. J. Math. Anal. Appl., 324, 82–97. MathSciNetMATHCrossRefGoogle Scholar
  12. Freedman, H. I., & Shukla, J. B. (1991). Models for the effect of toxicant in single-species and predator-prey systems. J. Math. Biol., 30, 15–30. MathSciNetMATHCrossRefGoogle Scholar
  13. Gard, T. C. (1984). Persistence in stochastic food web models. Bull. Math. Biol., 46, 357–370. MathSciNetMATHGoogle Scholar
  14. Gard, T. C. (1986). Stability for multispecies population models in random environments. Nonlinear Anal., 10, 1411–1419. MathSciNetMATHCrossRefGoogle Scholar
  15. Gard, T. C. (1988). Introductions to stochastic differential equations. New York. Google Scholar
  16. Gard, T. C. (1992). Stochastic models for toxicant-stressed populations. Bull. Math. Biol., 54, 827–837. MATHGoogle Scholar
  17. Gillespiea, D. T. (2000). The chemical Langevin equation. J. Chem. Phys., 113, 297–306. CrossRefGoogle Scholar
  18. Hallam, T. G., Clark, C. E., & Lassider, R. R. (1983a). Effects of toxicant on population: a qualitative approach I. Equilibrium environmental exposure. Ecol. Model., 8, 291–304. CrossRefGoogle Scholar
  19. Hallam, T. G., Clark, C. E., & Jordan, G. S. (1983b). Effects of toxicant on population: a qualitative approach II. First Order Kinetics. J. Math. Biol., 18, 25–37. MATHCrossRefGoogle Scholar
  20. Hallam, T. G., & Deluna, J. L. (1984). Effects of toxicant on populations: a qualitative approach III. Environmental and food chain pathways. J. Theor. Biol., 109, 411–429. CrossRefGoogle Scholar
  21. Hallam, T. G., & Ma, Z. (1986). Persistence in population models with demographic fluctuations. J. Math. Biol., 24, 327–339. MathSciNetMATHCrossRefGoogle Scholar
  22. Hallam, T. G., & Ma, Z. (1987). On density and extinction in continuous population model. J. Math. Biol., 25, 191–201. MathSciNetMATHCrossRefGoogle Scholar
  23. Hardin, G. (1960). The competitive exclusion principle. Science, 131, 1292–1297. CrossRefGoogle Scholar
  24. He, J., & Wang, K. (2007). The survival analysis for a single-species population model in a polluted environment. Appl. Math. Model., 31, 2227–2238. MATHCrossRefGoogle Scholar
  25. He, J., & Wang, K. (2009). The survival analysis for a population in a polluted environment. Nonlinear Anal. Real World Appl., 10, 1555–1571. MathSciNetMATHCrossRefGoogle Scholar
  26. Higham, D. J. (2001). An algorithmic introduction to numerical simulation of stochastic differential equations. SIAM Rev., 43, 525–546. MathSciNetMATHCrossRefGoogle Scholar
  27. Hsu, S. B., Luo, T. K., & Waltman, P. (1995). Competition between plasmid-bearing and plasmid-free organisms in a chemostat with an inhibitorm. J. Math. Biol., 34, 225–238. MathSciNetMATHCrossRefGoogle Scholar
  28. Ikeda, N., & Watanabe, S. (1977). A comparison theorem for solutions of stochastic differential equations and its applications. Osaka J. Math. 619–633. Google Scholar
  29. Jensen, A. L., & Marshall, J. S. (1982). Application of a surplus production model to assess environmental impacts on exploited populations of Daphnia pluex in the laboratory. Environ. Pollut., 28, 273–280. CrossRefGoogle Scholar
  30. Li, X., & Mao, X. (2009). Population dynamical behavior of non-autonomous Lotka–Volterra competitive system with random perturbation. Discrete Contin. Dyn. Syst., 24, 523–545. MathSciNetMATHCrossRefGoogle Scholar
  31. Liu, H., & Ma, Z. (1991). The threshold of survival for system of two species in a polluted environment. J. Math. Biol., 30, 49–51. MathSciNetMATHCrossRefGoogle Scholar
  32. Liu, M., & Wang, K. (2009). Survival analysis of stochastic single-species population models in polluted environments. Ecol. Model., 220, 1347–1357. CrossRefGoogle Scholar
  33. Liu, M., & Wang, K. (2010). Persistence and extinction of a stochastic single-specie model under regime switching in a polluted environment. J. Theor. Biol., 264, 934–944. CrossRefGoogle Scholar
  34. Ludwig, D. (1975). Persistence of dynamical systems under random perturbations. SIAM. Rev., 17, 605–640. MathSciNetMATHCrossRefGoogle Scholar
  35. Luna, J. T., & Hallam, T. G. (1987). Effects of toxicants on population: a qualitative approach IV. Resources-consumer-toxicant models. Ecol. Model., 35, 249–273. CrossRefGoogle Scholar
  36. Luo, Q., & Mao, X. (2007). Stochastic population dynamics under regime switching. J. Math. Anal. Appl., 334, 69–84. MathSciNetMATHCrossRefGoogle Scholar
  37. Ma, Z., Song, B., & Hallam, T. G. (1989). The threshold of survival for systems in a fluctuating environment. Bull. Math. Biol., 51, 311–323. MATHGoogle Scholar
  38. Mao, X., Marion, G., & Renshaw, E. (2002). Environmental Brownian noise suppresses explosions in populations dynamics. Stoch. Process. Appl., 97, 95–110. MathSciNetMATHCrossRefGoogle Scholar
  39. Mao, X., Sabanis, S., & Renshaw, E. (2003). Asymptotic behaviour of the stochastic Lotka–Volterra model. J. Math. Anal. Appl., 287, 141–156. MathSciNetMATHCrossRefGoogle Scholar
  40. Mao, X. (2005). Delay population dynamics and environmental noise. Stoch. Dyn., 5, 149–162. MathSciNetMATHCrossRefGoogle Scholar
  41. Mao, X., & Yuan, C. (2006). Stochastic differential equations with Markovian switching. London: Imperial College Press. MATHGoogle Scholar
  42. May, R. M. (2001). Stability and complexity in model ecosystems. Princeton University Press: Princeton. MATHGoogle Scholar
  43. McKane, A. J., & Newman, T. J. (2005). Predator-prey cycles from resonant amplification of demographic stochasticity. Phys. Rev. Lett., 94, 218102. CrossRefGoogle Scholar
  44. Nelson, S. A. (1970). The problem of oil pollution of the sea. In Advances in marine biology (pp. 215–306). London: Academic Press. Google Scholar
  45. Øsendal, B. (1998). Stochastic differential equations: an introduction with applications (5th ed.). Berlin: Springer. Google Scholar
  46. Pang, S., Deng, F., & Mao, X. (2008). Asymptotic properties of stochastic population dynamics, Dynamics of Continuous. Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 15, 603–620. MathSciNetMATHGoogle Scholar
  47. Rudnicki, R., & Pichor, K. (2007). Influence of stochastic perturbation on prey-predator systems. Math. Biosci., 206, 108–119. MathSciNetMATHCrossRefGoogle Scholar
  48. Samanta, G. P., & Maiti, A. (2004). Dynamical model of a single-species system in a polluted environment. J. Appl. Math. Comput., 16, 231–242. MathSciNetMATHCrossRefGoogle Scholar
  49. Shukla, J. B., & Dubey, B. (1996). Simultaneous effect of two toxicants on biological species: a mathematical model. J. Biol. Syst., 4, 109–130. CrossRefGoogle Scholar
  50. Shukla, J. B., Freedman, H. I., Pal, V. N., Misra, O. P., Agarwal, M., & Shukla, A. (1989). Degradation and subsequent regeneration of a forestry resource: a mathematical model. Ecol. Model., 44, 219–229. CrossRefGoogle Scholar
  51. Thomas, D. M., Snell, T. W., & Joffer, S. M. (1996). A control problem in a polluted environment. Math. Biosci., 133, 139–163. MATHCrossRefGoogle Scholar
  52. Turelli, M. (1977). Random environments and stochastic calculus. Theor. Pop. Biol., 12, 140–178. MathSciNetMATHCrossRefGoogle Scholar
  53. Zhu, C., & Yin, G. (2009). On competitive Lotka–Volterra model in random environments. J. Math. Anal. Appl., 357, 154–170. MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Society for Mathematical Biology 2010

Authors and Affiliations

  1. 1.Department of MathematicsHarbin Institute of TechnologyWeihaiP.R. China
  2. 2.School of Mathematics and StatisticsNortheast Normal UniversityChangchunP.R. China

Personalised recommendations