Bulletin of Mathematical Biology

, Volume 73, Issue 6, pp 1292–1311 | Cite as

From Plateau to Pseudo-Plateau Bursting: Making the Transition

  • Wondimu Teka
  • Krasimira Tsaneva-Atanasova
  • Richard Bertram
  • Joël Tabak
Original Article


Bursting electrical activity is ubiquitous in excitable cells such as neurons and many endocrine cells. The technique of fast/slow analysis, which takes advantage of time scale differences, is typically used to analyze the dynamics of bursting in mathematical models. Two classes of bursting oscillations that have been identified with this technique, plateau and pseudo-plateau bursting, are often observed in neurons and endocrine cells, respectively. These two types of bursting have very different properties and likely serve different functions. This latter point is supported by the divergent expression of the bursting patterns into different cell types, and raises the question of whether it is even possible for a model for one type of cell to produce bursting of the type seen in the other type without large changes to the model. Using fast/slow analysis, we show here that this is possible, and we provide a procedure for achieving this transition. This suggests that the design principles for bursting in endocrine cells are just quantitative variations of those for bursting in neurons.


Bursting Pituitary cells Islets Calcium Mathematical model 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Al-Baldawi, N. F., & Abercrombie, R. F. (1995). Cytoplasmic calcium buffer capacity determined with Nitr-5 and DM-nitrophen. Cell Calcium, 17, 409–421. CrossRefGoogle Scholar
  2. Berlin, J. R., Bassani, J. W. M., & Bers, D. M. (1994). Intrinsic cytosolic calcium buffering properties of single rat cardiac myocytes. Biophys. J., 67, 1775–1787. CrossRefGoogle Scholar
  3. Bertram, R., & Sherman, A. (2004). A calcium-based phantom bursting model for pancreatic islets. Bull. Math. Biol., 66, 1313–1344. MathSciNetCrossRefGoogle Scholar
  4. Bertram, R., & Sherman, A. (2005). Negative calcium feedback: the road from Chay–Keizer. In S. Coombes, & P. Bressloff (Eds.), The genesis of rhythm in the nervous system (pp. 19–48). New Jersey: World Scientific Press. CrossRefGoogle Scholar
  5. Bertram, R., Butte, M. J., Kiemel, T., & Sherman, A. (1995). Topological and phenomenological classification of bursting oscillations. Bull. Math. Biol., 57, 413–439. zbMATHGoogle Scholar
  6. Chay, T., & Keizer, J. (1983). Minimal model for membrane oscillations in the pancreatic β-cell. Biophys. J., 42, 181–190. CrossRefGoogle Scholar
  7. Ermentrout, B. (2002). Simulating, analyzing, and animating dynamical systems: a guide to XPPAUT for researchers and students. Philadelphia: SIAM. zbMATHCrossRefGoogle Scholar
  8. Izhikevich, E. M. (2000). Neural excitability, spiking and bursting. Int. J. Bifur. Chaos, 10, 1171–1266. MathSciNetzbMATHCrossRefGoogle Scholar
  9. LeBeau, A. P., Robson, A. B., McKinnon, A. E., & Sneyd, J. (1998). Analysis of a reduced model of corticotroph action potentials. J. Theor. Biol., 192, 319–339. CrossRefGoogle Scholar
  10. Mansvelder, H. D., & Kits, K. S. (1998). The relation of exocytosis and rapid endocytosis to calcium entry evoked by short repetitive depolarizing pulses in rat melanotropic cells. J. Neurosci., 18, 81–92. Google Scholar
  11. Mennerick, S., & Matthews, G. (1996). Ultrafast exocytosis elicited by calcium current in synaptic terminals of retinal bipolar neurons. Neuron, 17, 1241–1249. CrossRefGoogle Scholar
  12. Prinz, A. A., Abbott, L. F., & Marde, E. (2004). The dynamic clamp comes of age. Trends Neurosci., 27, 218–224. CrossRefGoogle Scholar
  13. Rinzel, J. (1987). A formal classification of bursting mechanisms in excitable systems. In E. Teramoto, & M. Yamaguti (Eds.), Lecture notes in biomathematics : Vol. 71. Mathematical topics in population biology, morphogenesis, and neurosciences (pp. 267–281). Berlin: Springer. Google Scholar
  14. Roussel, C., Erneux, T., Schiffmann, S., & Gall, D. (2006). Modulation of neuronal excitability by intracellular calcium buffering: from spiking to bursting. Cell Calcium, 39, 455–466. CrossRefGoogle Scholar
  15. Sharp, A. A., O’Neil, M. B., Abbott, L. F., & Marder, E. (1993). Dynamic clamp: computer-generated conductances in real neurons. J. Neurophysiol., 69, 992–995. Google Scholar
  16. Sheng, Z. H., Rettig, J., Cook, T., & Catterall, W. A. (1996). Calcium-dependent interaction of N-type calcium channels with the synaptic core complex. Nature, 379, 451–454. CrossRefGoogle Scholar
  17. Stern, J. V., Osinga, H. M., LeBeau, A., & Sherman, A. (2008). Resetting behavior in a model of bursting in secretory pituitary cells: distinguishing plateaus from pseudo-plateaus. Bull. Math. Biol., 70, 68–88. MathSciNetzbMATHCrossRefGoogle Scholar
  18. Stojilkovic, S. S., Zemkova, H., & Van Goor, F. (2005). Biophysical basis of pituitary cell type-specific Ca2+ signaling-secretion coupling. Trends Endocrinol. Metabol., 16, 152–159. CrossRefGoogle Scholar
  19. Tabak, J., Toporikova, N., Freeman, M. E., & Bertram, R. (2007). Low dose of dopamine may stimulate prolactin secretion by increasing fast potassium currents. J. Comput. Neurosci., 22, 211–222. MathSciNetCrossRefGoogle Scholar
  20. Tsaneva-Atanasova, K., Sherman, A., Van Goor, F., & Stojilkovic, S. S. (2007). Mechanism of spontaneous and receptor-controlled electrical activity in pituitary somatotrophs: experiments and theory. J. Neurophysiol., 98, 131–144. CrossRefGoogle Scholar
  21. Tse, F. W., Tse, A., Hille, B., Horstmann, H., & Almers, W. (1997). Local Ca2+ release from internal stores controls exocytosis in pituitary gonadotrophs. Neuron, 18, 121–132. CrossRefGoogle Scholar
  22. Van Goor, F., Li, Y.-X., & Stojilkovic, S. S. (2001a). Paradoxical role of large-conductance calcium-activated K+ (BK) channels in controlling action potential-driven Ca2+ entry in anterior pituitary cells. J. Neurosci., 21, 5902–5915. Google Scholar
  23. Van Goor, F., Zivadinovic, D., Martinez-Fuentes, A. J., & Stojilkovic, S. S. (2001b). Dependence of pituitary hormone secretion on the pattern of spontaneous voltage-gated calcium influx. Cell type-specific action potential secretion coupling. J. Biol. Chem., 276, 33840–33846. CrossRefGoogle Scholar
  24. Zhang, M., Goforth, P., Bertram, R., Sherman, A., & Satin, L. (2003). The Ca2+ dynamics of isolated mouse β-cells and islets: implications for mathematical models. Biophys. J., 84, 2852–2870. CrossRefGoogle Scholar

Copyright information

© Society for Mathematical Biology 2010

Authors and Affiliations

  • Wondimu Teka
    • 1
  • Krasimira Tsaneva-Atanasova
    • 2
  • Richard Bertram
    • 3
  • Joël Tabak
    • 4
  1. 1.Department of MathematicsFlorida State UniversityTallahasseeUSA
  2. 2.Bristol Centre for Applied Nonlinear Mathematics, Department of Engineering MathematicsUniversity of BristolBristolUK
  3. 3.Department of Mathematics, and Programs in Neuroscience and Molecular BiophysicsFlorida State UniversityTallahasseeUSA
  4. 4.Department of Biological ScienceFlorida State UniversityTallahasseeUSA

Personalised recommendations