Bulletin of Mathematical Biology

, Volume 73, Issue 5, pp 1004–1027 | Cite as

General Classification of Maturation Reaction-Norm Shape from Size-based Processes

  • Asbjorn Christensen
  • Ken Haste Andersen
Original Article


Phenotypic plasticity of size at maturation is commonly described using size–age maturation reaction norms (MRNs). MRNs for age and size at maturation are analyzed and classified into three general categories related to different size scalings of growth and mortality. The underlying model for growth and mortality is based on processes at the level of the individual, and is motivated by the energy budget of fish. MRN shape is a balance between opposing factors and depends on subtle details of size dependence of growth and mortality. MRNs with both positive and negative slopes are predicted, and for certain mortality conditions also a lower critical spawning mass. The model is applied to predict a generic fishery-induced evolutionary response and allows assessment of climate change impact on MRNs. Our work stresses the importance of using realistic size dependence of mortality and growth, since this strongly influences the predicted MRNs and sensitivity to harvest pressure.


Optimal life-history theory Growth Mortality Fisheries induced evolution Climate change impact 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andersen, K. H., & Brander, K. (2009). Expected rate of fisheries-induced evolution is slow. Proc. Nat. Acad. Sci., 106(28), 11,657–11,660. CrossRefGoogle Scholar
  2. Andersen, K. H., Farnsworth, K. D., Thygesen, U. H., & Beyer, J. E. (2007). The evolutionary pressure from fishing on size at maturation of Baltic cod. Ecol. Model., 204(1–2), 246–252. doi: 10.1016/j.ecolmodel.2007.01.002. CrossRefGoogle Scholar
  3. Berrigan, D., & Koella, J. (1994). The evolution of reaction norms: Simple models for age and size at maturity. J. Evol. Biol., 7(5), 549–566. CrossRefGoogle Scholar
  4. Blanchard, J., Dulvy, N., Jennings, S., Ellis, J., Pinnegar, J., Tidd, A., & Kell, L. (2005). Do climate and fishing influence size-based indicators of Celtic Sea fish community structure? ICES J. Mar. Sci., 62(3), 405–411. doi: 10.1016/j.icesjms.2005.01.006. CrossRefGoogle Scholar
  5. Browman, H. I., Law, R., & Marshall, C. T. (2008). The role of fisheries-induced evolution. Science, 320(5872), 47. CrossRefGoogle Scholar
  6. Chambers, R. C. (1997). Environmental influences on egg and propagule sizes in marine fishes. In Chambers, R. C., & Trippel, E. A. (Eds.), Early life history and recruitment in fish populations (pp. 63–102). London: Chapman & Hall. Google Scholar
  7. Cury, P., Shannon, L., Roux, J., Daskalov, G., Jarre, A., Moloney, C., & Pauly, D. (2005). Trophodynamic indicators for an ecosystem approach to fisheries. ICES J. Mar. Sci., 62(3), 430–442. doi: 10.1016/j.icesjms.2004.12.006. CrossRefGoogle Scholar
  8. Day, T., & Rowe, L. (2002). Developmental thresholds and the evolution of reaction norms for age and size at life-history transitions. Am. Nat., 159(4), 338–350. CrossRefGoogle Scholar
  9. Day, T., & Taylor, P. (1997). Von Bertalanffy’s growth equation should not be used to model age and size at maturity. Am. Nat., 149(2), 381–393. CrossRefGoogle Scholar
  10. Dunlop, E. S., Heino, M., & Dieckmann, U. (2009). Eco-genetic modeling of contemporary life-history evolution. Ecol. Appl., 19(7), 1815–1834. CrossRefGoogle Scholar
  11. Dunlop, E. S., Shuter, B. J., & Dieckmann, U. (2007). Demographic and evolutionary consequences of selective mortality: Predictions from an eco-genetic model for smallmouth bass. Trans. Am. Fish. Soc., 136(3), 749–765. doi: 10.1577/T06-126.1. CrossRefGoogle Scholar
  12. Ernande, B., Dieckmann, U., & Heino, M. (2004). Adaptive changes in harvested populations: Plasticity and evolution of age and size at maturation. Proc. R. Soc. B: Biol. Sci., 271(1537), 415–423. doi: 10.1098/rspb.2003.2519. CrossRefGoogle Scholar
  13. Gårdmark, A., & Dieckmann, U. (2006). Disparate maturation adaptations to size-dependent mortality. Proc. R. Soc. B: Biol. Sci., 273(1598), 2185–2192. doi: 10.1098/rspb.2006.3562. CrossRefGoogle Scholar
  14. Heino, M. (1998). Management of evolving fish stocks. Can. J. Fish. Aquat. Sci., 55(8), 1971–1982. CrossRefGoogle Scholar
  15. Heino, M., & Dieckmann, U. (2008). Detecting fisheries-induced life-history evolution: An overview of the reaction-norm approach. Bull. Mar. Sci., 83(1), 69–93. Google Scholar
  16. Heino, M., Dieckmann, U., & Godø, O. (2002). Measuring probabilistic reaction norms for age and size at maturation. Evolution, 56(4), 669–678. Google Scholar
  17. Jobling, M. (1994). Fish and fisheries series : Vol. 13. Fish bioenergetics. London: Chapman & Hall. Google Scholar
  18. Jørgensen, C., Enberg, K., Dunlop, E. S., Arlinghaus, R., Boukal, D. S., Brander, K., Ernande, B., Gaerdmark, A., Johnston, F., Matsumura, S., Pardoe, H., Raab, K., Silva, A., Vainikka, A., Dieckmann, U., Heino, M., & Rijnsdorp, A. D. (2007). Ecology—managing evolving fish stocks. Science, 318(5854), 1247–1248. doi: 10.1126/science.1148089. CrossRefGoogle Scholar
  19. Law, R. (2000). Fishing, selection, and phenotypic evolution. ICES J. Mar. Sci., 57(3), 659–668. CrossRefMathSciNetGoogle Scholar
  20. Law, R. (2007). Fisheries-induced evolution: present status and future directions. Mar. Ecol. Progr. Ser., 335, 271–277. CrossRefGoogle Scholar
  21. Law, R., & Grey, D. (1989). Evolution of yields from populations with age-specific cropping. Evol. Ecol., 3(4), 343–359. CrossRefGoogle Scholar
  22. Mylius, S., & Diekmann, O. (1995). On evolutionarily stable life histories, optimization and the need to be specific about density dependence. Oikos, 74(2), 218–224. CrossRefGoogle Scholar
  23. Peters, R. (1983). The ecological implications of body size. Cambridge: Cambridge University Press. Google Scholar
  24. Quince, C., Abrams, P. A., Shuter, B. J., & Lester, N. P. (2008). Biphasic growth in fish I: Theoretical foundations. J. Theor. Biol., 254(2), 197–206. doi: 10.1016/j.jtbi.2008.05.029. CrossRefGoogle Scholar
  25. Reiss, M. J. (1991). The allometry of growth and reproduction. Cambridge: Cambridge University Press. Google Scholar
  26. Stearns, S., & Koella, J. (1986). The evolution of phenotypic plasticity in life-history traits. Predictions of reaction norms for age and size at maturity. Evolution, 40(5), 893–913. CrossRefGoogle Scholar
  27. Taborsky, B., Dieckmann, U., & Heino, M. (2003). Unexpected discontinuities in life-history evolution under size-dependent mortality. Proc. R. Soc. B: Biol. Sci., 270(1516), 713–721. doi: 10.1098/rspb.2002.2255. CrossRefGoogle Scholar
  28. Thorpe, J. E. (2007). Maturation responses of salmonids to changing developmental opportunities. Mar. Ecol. Progr. Ser., 335, 285–288. CrossRefGoogle Scholar
  29. Thygesen, U., Farnsworth, K., Andersen, K., & Beyer, J. (2005). How optimal life history changes with the community size-spectrum. Proc. R. Soc. B: Biol. Sci., 272(1570), 1323–1331. doi: 10.1098/rspb.2005.3094. CrossRefGoogle Scholar
  30. Vinberg, G. G. (1956). Rate of metabolism and food requirements of fishes. Fish. Res. Board Can., 194, 1–253. Google Scholar
  31. Ware, D. M. (1975). Growth, metabolism, and optimal swimming speed of a pelagic fish. Fish. Res. Board Can., 32(1), 33–41. MathSciNetGoogle Scholar
  32. West, G. B., Brown, J. H., & Enquist, B. J. (2001). A general model for ontogenetic growth. Nature, 413, 628–631. CrossRefGoogle Scholar
  33. Wright, P. J. (2007). Understanding the maturation process for field investigations of fisheries-induced evolution. Mar. Ecol. Progr. Ser., 335, 279–283. CrossRefGoogle Scholar

Copyright information

© Society for Mathematical Biology 2010

Authors and Affiliations

  1. 1.DTU AquaCharlottenlundDenmark

Personalised recommendations