Advertisement

Bulletin of Mathematical Biology

, Volume 73, Issue 3, pp 626–638 | Cite as

A Game Theoretical Analysis of the Mating Sign Behavior in the Honey Bee

  • M. Wilhelm
  • M. Chhetri
  • J. Rychtář
  • O. Rueppell
Original Article

Abstract

Queens of the honey bee, Apis mellifera (L.), exhibit extreme polyandry, mating with up to 45 different males (drones). This increases the genetic diversity of their colonies, and consequently their fitness. After copulation, drones leave a mating sign in the genital opening of the queen which has been shown to promote additional mating of the queen. On one hand, this signing behavior is beneficial for the drone because it increases the genetic diversity of the resulting colony that is to perpetuate his genes. On the other hand, it decreases the proportion of the drone’s personal offspring among colony members which is reducing drone fitness. We analyze the adaptiveness and evolutionary stability of this drone’s behavior with a game-theoretical model. We find that theoretically both the strategy of leaving a mating sign and the strategy of not leaving a mating sign can be evolutionary stable, depending on natural parameters. However, the signing strategy is not favored for most scenarios, including the cases that are biologically plausible in reference to empirical data. We conclude that leaving a sign is not in the interest of the drone unless it serves biological functions other than increasing subsequent queen mating chances. Nevertheless, our analysis can also explain the prevalence of such a behavior of honey bee drones by a very low evolutionary pressure for an invasion of the nonsigning strategy.

Keywords

Mating behavior ESS Game theory Strategy Social insects Multiple mating Mating plug 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baer, B., & Schmid-Hempel, P. (1999). Experimental variation in polyandry affects parasite loads and fitness in a bumble-bee. Nature, 397, 151–154. CrossRefGoogle Scholar
  2. Baudry, E., Solignac, M., Garnery, L., Gries, M., Cornuet, J. M., & Koeniger, N. (1998). Relatedness among honeybees (Apis mellifera) of a drone congregation. Proc. R. Soc. Lond. B, 265, 2009–2014. Google Scholar
  3. Boomsma, J. J., Fjerdingstad, E. J., & Frydenberg, J. (1999). Multiple paternity, relatedness and genetic diversity in Acromyrmex leaf-cutter ants. Proc. R. Soc. Lond. B: Biol. Sci., 266, 249–254. CrossRefGoogle Scholar
  4. Boomsma, J. J., Baer, B., & Heinze, J. (2005). The evolution of male traits in social insects. Ann. Rev. Entomol., 50, 395–420. CrossRefGoogle Scholar
  5. Estoup, A., Solignac, M., & Cornuet, J. M. (1994). Precise assessment of the number of patrilines and of genetic relatedness in honeybee colonies. Proc. R. Soc. Lond. B: Biol. Sci., 258, 1–7. CrossRefGoogle Scholar
  6. Fuchs, S., & Moritz, R. F. A. (1999). Evolution of extreme polyandry in the honeybee Apis mellifera L. Behav. Ecol. Sociobiol., 45, 269–275. CrossRefGoogle Scholar
  7. Gillespie, D. T. (1977). Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem., 81(25), 2340–2360. CrossRefGoogle Scholar
  8. Gillott, C. (2003). Male accessory gland secretions: modulators of female reproductive physiology and behavior. Ann. Rev. Entomol., 48, 163–184. CrossRefGoogle Scholar
  9. Gove, R., Hayworth, M., Chhetri, M., & Rueppell, O. (2009). Division of labour and social insect colony performance in relation to task and mating number under two alternative response threshold models. Insectes Sociaux, 56, 319–331. DOI: 10.1007/s00040-009-0028-y. CrossRefGoogle Scholar
  10. Hayworth, M. K., Johnson, N. G., Wilhelm, M. E., Gove, R. P., Metheny, J. M., & Rueppell, O. (2009). Added weights lead to reduced flight behavior and mating success in polyandrous honey bee queens (Apis mellifera). Ethology, 115, 698–706. DOI:  10.1111/j.1439-0310.2009.01655.x. CrossRefGoogle Scholar
  11. Koeniger, G. (1990). The role of the mating sign in honey bees, Apis mellifera L.: does it hinder or promote multiple mating? Animal Behav., 39, 444–449. CrossRefGoogle Scholar
  12. Koeniger, N., & Koeniger, G. (1991). An evolutionary approach to mating behavior and drone copulatory organs in Apis. Apidologie, 22, 581–590. CrossRefGoogle Scholar
  13. Koeniger, N., & Koeniger, G. (2007). Mating flight duration of Apis mellifera queens: as short as possible, as long as necessary. Apidologie, 38, 606–611. CrossRefGoogle Scholar
  14. Koeniger, G., Koeniger, N., & Fabritius, M. (1979). Some detailed observations of mating in the honeybee. Bee World, 60, 53–57. Google Scholar
  15. Kronauer, D. J. C., Johnson, R. A., & Boomsma, J. J. (2007). The evolution of multiple mating in army ants. Evolution, 61, 413–422. CrossRefGoogle Scholar
  16. Loper, G. M., Wolf, W. W., & Taylor, O. R. (1992). Honey-Bee drone flyways and congregation areas—radar observations. J. Kans. Entomol. Soc., 65, 223–230. Google Scholar
  17. Mattila, H. R., & Seeley, T. D. (2007). Genetic diversity in honey bee colonies enhances productivity and fitness. Science, 317, 362–364. CrossRefGoogle Scholar
  18. Maynard Smith, J. (1982). In Evolution and the theory of games (p.  204). Cambridge: Cambridge University Press. Google Scholar
  19. Oldroyd, B. P., & Wongsiri, S. (2006). Asian honey bees: biology, conservation and human interactions. Cambridge: Harvard University Press. Google Scholar
  20. Rueppell, O., Fondrk, M. K., & Page, R. E. (2006). Male maturation response to selection of the pollen-hoarding syndrome in honey bees (Apis mellifera L). Animal Behav., 71, 227–234. CrossRefGoogle Scholar
  21. Rueppell, O., Johnson, N. G., & Rychtář, J. (2008). Variance-based selection may explain general mating patterns in social insects. Biol. Lett., 4, 270–273. CrossRefGoogle Scholar
  22. Ruttner, F. (1954). Mehrfache Begattung der Bienenkönigin. Zool. Anz., 153, 99–105. Google Scholar
  23. Tarpy, D. R., & Nielsen, D. I. (2002). Sampling error, effective paternity and estimating the genetic structure of honey bee colonies (Hymenoptera: Apidae). Ann. Entomol. Soc. Am., 95, 513–528. CrossRefGoogle Scholar
  24. Wattanachaiyingcharoen, W., Oldroyd, B. P., Wongsiri, S., Palmer, K., & Paar, R. (2003). A scientific note on the mating frequency of Apis dorsata. Apidologie, 34, 85–86. CrossRefGoogle Scholar
  25. Wiernasz, D. C., Perroni, C. L., & Cole, B. J. (2004). Polyandry and fitness in the western harvester ant Pogonomyrmex occidentalis. Mol. Ecol., 13, 1601–1606. CrossRefGoogle Scholar
  26. Winston, M. L. (1987). The biology of honey bees (pp. 202, 209–210). First Harvard University Press Paperback edition (1991). Google Scholar
  27. Woyciechowski, M., Kabat, L., & Krol, E. (1994). The function of the mating sign in honey bees Apis mellifera L—new evidence. Animal Behav., 47, 733–735. CrossRefGoogle Scholar
  28. Woyke, J. (1964). Causes of repeated mating flights by queen honeybees. J. Apic. Res., 3, 17–23. Google Scholar
  29. Woyke, J., & Ruttner, F. (1958). An anatomical study of the mating process in the honeybee. Bee World, 39, 3–18. Google Scholar

Copyright information

© Society for Mathematical Biology 2010

Authors and Affiliations

  • M. Wilhelm
    • 1
  • M. Chhetri
    • 1
  • J. Rychtář
    • 1
  • O. Rueppell
    • 2
  1. 1.Department of Mathematics and StatisticsThe University of North Carolina at GreensboroGreensboroUSA
  2. 2.Department of BiologyThe University of North Carolina at GreensboroGreensboroUSA

Personalised recommendations