Bulletin of Mathematical Biology

, Volume 73, Issue 1, pp 248–260 | Cite as

Asymmetry in the Presence of Migration Stabilizes Multistrain Disease Outbreaks

Original Article

Abstract

We study the effect of migration between coupled populations, or patches, on the stability properties of multistrain disease dynamics. The epidemic model used in this work displays a Hopf bifurcation to oscillations in a single, well-mixed population. It is shown numerically that migration between two non-identical patches stabilizes the endemic steady state, delaying the onset of large amplitude outbreaks and reducing the total number of infections. This result is motivated by analyzing generic Hopf bifurcations with different frequencies and with diffusive coupling between them. Stabilization of the steady state is again seen, indicating that our observation in the full multistrain model is based on qualitative characteristics of the dynamics rather than on details of the disease model.

Keywords

Dengue Metapopulation models 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aguiar, M., & Stollenwerk, N. (2007). A new chaotic attractor in a basic multistrain epidemiological model with temporary cross immunity. arXiv:0704.3174.
  2. Andreasen, V., Lin, J., & Levin, S. A. (1997). The dynamics of cocirculating influenza strains conferring partial cross-immunity. J. Math. Biol., 35, 825–842. MATHCrossRefMathSciNetGoogle Scholar
  3. Barbazan, P., Tuntaprasart, W., Souris, M., Demoraes, F., Nitatpattana, N., Boonyuan, W., & Gonzalez, J.-P. (2008). Assessment of a new strategy, based on Aedes aegypti (L.) pupal productivity, for the surveillance and control of dengue transmission in Thailand. Ann. Trop. Med. Parasitol., 102, 161–71. CrossRefGoogle Scholar
  4. Bianco, S., Shaw, L. B., & Schwartz, I. B. (2009). Epidemics with multistrain interactions: The interplay between cross immunity and antibody-dependent enhancement. Chaos, 19, 043123. CrossRefGoogle Scholar
  5. Billings, L., Schwartz, I. B., Shaw, L. B., Burke, D. S., & Cummings, D. A. T. (2007). Instabilities in multiserotype disease models with antibody-dependent enhancement. J. Theor. Biol., 246, 18–27. CrossRefMathSciNetGoogle Scholar
  6. Billings, L., Fiorillo, A., & Schwartz, I. B. (2008). Vaccinations in disease models with antibody-dependent enhancement. Math. Biosci., 211, 265–281. MATHCrossRefMathSciNetGoogle Scholar
  7. Bolker, B., & Grenfell, B. (1995). Space, persistence and dynamics of measles epidemics. Philos. Trans. R. Soc. Lond. B, 348, 309–320. CrossRefGoogle Scholar
  8. Colizza, V., & Vespignani, A. (2008). Epidemic modeling in metapopulation systems with heterogenous coupling patter: Theory and simulations. J. Theor. Biol., 251, 450–467. CrossRefGoogle Scholar
  9. Cummings, D. A. T., Irizarry, R. A., Huang, N. E., Endy, T. P., Nisalak, A., Ungchusak, K., & Burke, D. S. (2004). Travelling waves in the occurrence of dengue haemorrhagic fever in Thailand. Nature, 427, 344–347. CrossRefGoogle Scholar
  10. Cummings, D. A. T., Schwartz, I. B., Billing, L., Shaw, L. B., & Burke, D. S. (2005). Dynamic effect of antibody-dependent enhancement on the fitness of viruses. Proc. Natl. Acad. Sci. USA, 102(42), 15259. CrossRefGoogle Scholar
  11. Cummings, D. A. T., Iamsirithaworn, S., Lessler, J. T., McDermott, A., Prasanthong, R., Nisalak, A., Jarman, R. G., Burke, D. S., & Gibbons, R. V. (2009). The impact of the demographic transition on dengue in Thailand: insights from a statistical analysis and mathematical modeling. PLoS Med., 9, e1000139. CrossRefGoogle Scholar
  12. Doedel, E., et al. (1997). Auto97: Continuation and bifurcation software for ordinary differential equations. Available from ftp://ftp.cs.concordia.ca/pub/doedel/auto/auto.ps.gz.
  13. Ferguson, N., Anderson, R., & Gupta, S. (1999a). The effect of antibody-dependent enhancement on the transmission dynamics and persistence of multiple-strain pathogens. Proc. Natl. Acad. Sci. USA, 96, 790. CrossRefGoogle Scholar
  14. Ferguson, N. M., Donnelly, C. A., & Anderson, R. M. (1999b). Transmission dynamics and epidemiology of dengue: insights from age-stratified sero-prevalence surveys. Philos. Trans. R. Soc. Lond. Ser. B, Biol. Sci., 354, 757–768. CrossRefGoogle Scholar
  15. Fussmann, G. F., Ellner, S. P., & Shertzer, K. W. (2000). Crossing the Hopf bifurcation in a live predator-prey system. Science, 290, 1358–1360. CrossRefGoogle Scholar
  16. Grais, R. F., Ellis, J. H., & Glass, G. E. (2003). Assessing the impact of airline travel on the geographic spread of pandemic influenza. Eur. J. Epidemiol., 18, 1065–1072. CrossRefGoogle Scholar
  17. Greenhalgh, D., Khan, Q., & Lewis, F. (2004). Hopf bifurcation in two SIRS density dependent epidemic models. Math. Comput. Model., 39, 1261–1283. MATHCrossRefMathSciNetGoogle Scholar
  18. Hagenaars, T. J., Donnelly, C. A., & Ferguson, N. M. (2004). Spatial heterogeneity and the persistence of infectious diseases. J. Theor. Biol., 229, 349–359. CrossRefMathSciNetGoogle Scholar
  19. Halstead, S. B. (2007). Dengue. Lancet, 370, 1644–1652. CrossRefGoogle Scholar
  20. Halstead, S. B., & Deen, J. (2002). The future of dengue vaccines. Lancet, 360, 1243. CrossRefGoogle Scholar
  21. Halstead, S. B., & O’Rourke, E. J. (1977). Antibody-enhanced dengue virus infection in primate leukocytes. Nature, 265, 739. CrossRefGoogle Scholar
  22. He, D., & Stone, L. (2003). Spatio-temporal synchronization of recurrent epidemics. Proc. R. Soc. Biol. Sci., 270(1523), 1519–1526. CrossRefGoogle Scholar
  23. Hu, D. J., Dondero, T. J., Rayfield, M. A., George, J. R., Schochetman, G., Jaffe, H. W., Luo, C. C., Kalish, M. L., Weniger, B. G., Pau, C. P., Schable, C. A., & Curran, J. W. (1996). The emerging genetic diversity of HIV. the importance of global surveillance for diagnostics, research, and prevention. JAMA J. Am. Med. Assoc., 275, 210–216. CrossRefGoogle Scholar
  24. Kawaguchi, I., Sasaki, A., & Boots, M. (2003). Why are dengue virus serotypes so distantly related? Enhancement and limiting serotype similarity between dengue virus strains. Proc. R. Soc. Biol. Sci., 270, 2241–2247. CrossRefGoogle Scholar
  25. Keeling, M. J., & Rohani, P. (2002). Estimating spatial coupling in epidemiological systems: a mechanistic approach. Ecol. Lett., 5, 20–29. CrossRefGoogle Scholar
  26. Liebovitch, L. S., & Schwartz, I. B. (2004). Migration induced epidemics: dynamics of flux-based multipatch models. Phys. Lett. A, 332, 256–267. MATHCrossRefGoogle Scholar
  27. Lloyd, A. L., & May, R. M. (1996). Spatial heterogeneity in epidemic models. J. Theor. Biol., 179, 1–11. CrossRefGoogle Scholar
  28. Nagao, Y., & Koelle, K. (2008). Decreases in dengue transmission may act to increase the incidence of dengue hemorrhagic fever. Proc. Nat. Acad. Sci. USA, 105, 2238–2243. CrossRefGoogle Scholar
  29. Nisalak, A., Endy, T. P., Nimmannitya, S., Kalayanarooj, S., Thisayakorn, U., Scott, R. M., Burke, D. S., Hoke, C. H., Innis, B. L., & Vaughn, D. W. (2003). Serotype specific virus circulation and dengue disease in Bangkok, Thailand from 1973 to 1999. Am. J. Trop. Med. Hyg., 68, 191–202. Google Scholar
  30. Rigau-Perez, J., Clark, G., Gubler, D., Reiter, P., Sanders, E., & Vancevorndam, A. (1998). Dengue and dengue haemorrhagic fever. Lancet, 352, 971–977. CrossRefGoogle Scholar
  31. Rohani, P., Earn, D. J. D., & Grenfell, B. T. (1999). Opposite patterns of synchrony in sympatric disease metapopulations. Science, 286, 968–971. CrossRefGoogle Scholar
  32. Ruan, S., Wang, W., & Levin, S. A. (2006). The effect of global travel on the spread of SARS. Math. Biosci. Eng., 3(1), 205–218. MATHMathSciNetGoogle Scholar
  33. Sattenspiel, L., & Dietz, K. (1995). A structured epidemic model incorporating geographic mobility among regions. Math. Biosci., 127, 71–91. CrossRefGoogle Scholar
  34. Schwartz, I. B., Shaw, L. B., Cummings, D. A. T., Billings, L., McCrary, M., & Burke, D. S. (2005). Chaotic desynchronization of multistrain diseases. Phys. Rev. E, 72, 066201. CrossRefGoogle Scholar
  35. Slosek, J. (1986). Aedes aegypti mosquitoes in the Americas: a review of their interactions with the human population. Soc. Sci. Med. (1982), 23, 249–257. CrossRefGoogle Scholar
  36. Strogatz, S. H. (2001). Nonlinear dynamics and chaos: with applications to physics, biology, chemistry and engineering. Boulder: Westview Press. Google Scholar
  37. Takada, A., Feldmann, H., Ksiazek, T. G., & Kawaoka, Y. (2003). Antibody-dependent enhancement of ebola virus infection. J. Virol., 77(13), 7539–7544. CrossRefGoogle Scholar
  38. Vaughn, D. W., Green, S., Kalayanarooj, S., Innis, B. L., Nimmannitya, S., Suntayakorn, S., Endy, T. P., Raengsakulrach, B., Rothman, A. L., Ennis, F. A., & Nisalak, A. (2000). Dengue viremia titer, antibody response pattern, and virus serotype correlate with disease severity. J. Infect. Dis., 181, 2–10. CrossRefGoogle Scholar
  39. Wearing, H. J., & Rohani, P. (2006). Ecological and immunological determinants of dengue epidemics. Proc. Natl. Acad. Sci. USA, 103(31), 11802. CrossRefGoogle Scholar
  40. World Health Organization Website (2006). http://www.who.int/mediacentre/factsheets/fs117/en/.

Copyright information

© Society for Mathematical Biology 2010

Authors and Affiliations

  1. 1.Department of Applied ScienceThe College of William and MaryWilliamsburgUSA

Personalised recommendations