Bulletin of Mathematical Biology

, Volume 73, Issue 3, pp 515–548 | Cite as

Modelling the Transmission Dynamics and Control of the Novel 2009 Swine Influenza (H1N1) Pandemic

  • O. Sharomi
  • C. N. Podder
  • A. B. Gumel
  • S. M. Mahmud
  • E. Rubinstein
Original Article

Abstract

The paper presents a deterministic compartmental model for the transmission dynamics of swine influenza (H1N1) pandemic in a population in the presence of an imperfect vaccine and use of drug therapy for confirmed cases. Rigorous analysis of the model, which stratifies the infected population in terms of their risk of developing severe illness, reveals that it exhibits a vaccine-induced backward bifurcation when the associated reproduction number is less than unity. The epidemiological consequence of this result is that the effective control of H1N1, when the reproduction number is less than unity, in the population would then be dependent on the initial sizes of the subpopulations of the model. For the case where the vaccine is perfect, it is shown that having the reproduction number less than unity is necessary and sufficient for effective control of H1N1 in the population (in such a case, the associated disease-free equilibrium is globally asymptotically stable). The model has a unique endemic equilibrium when the reproduction number exceeds unity. Numerical simulations of the model, using data relevant to the province of Manitoba, Canada, show that it reasonably mimics the observed H1N1 pandemic data for Manitoba during the first (Spring) wave of the pandemic. Further, it is shown that the timely implementation of a mass vaccination program together with the size of the Manitoban population that have preexisting infection-acquired immunity (from the first wave) are crucial to the magnitude of the expected burden of disease associated with the second wave of the H1N1 pandemic. With an estimated vaccine efficacy of approximately 80%, it is projected that at least 60% of Manitobans need to be vaccinated in order for the effective control or elimination of the H1N1 pandemic in the province to be feasible. Finally, it is shown that the burden of the second wave of H1N1 is expected to be at least three times that of the first wave, and that the second wave would last until the end of January or early February, 2010.

Keywords

Swine flu H1N1 Model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boëlle, P. Y., Bernillon, P., & Desenclos, J. C. (2000). A preliminary estimation of the reproduction ratio for new influenza A(H1N1) from the outbreak in Mexico. Euro Surveill., 14(19), 19205. Google Scholar
  2. Brauer, F. (2004). Backward bifurcations in simple vaccination models. J. Math. Anal. Appl., 298(2), 418. MathSciNetMATHCrossRefGoogle Scholar
  3. Brian, J. C., Bradley, G. W., & Sally, B. (2009). Modeling influenza epidemics and pandemics: insights into the future of swine flu (H1N1). BMC Med. doi:10.1186/1741-7015-7-30. Google Scholar
  4. Canada Enters Second Wave of H1N1. http://www.cbc.ca/health/story/2009/10/23/h1n1-second-wave-canada.html. Accessed 04 November 2009.
  5. Carr, J. (1981). Applications Centre Manifold Theory. New York: Springer. MATHGoogle Scholar
  6. Castillo-Chavez, C., & Song, B. (2004). Dynamical models of tuberculosis and their applications. Math. Biosci. Eng., 1(2), 361–404. MathSciNetMATHGoogle Scholar
  7. Castillo-Chavez, C., Cooke, K., Huang, W., & Levin, S. A. (1989a). Results on the dynamics for models for the sexual transmission of the human immunodeficiency virus. Appl. Math. Lett., 2, 327. MATHCrossRefGoogle Scholar
  8. Castillo-Chavez, C., Cooke, K., Huang, W., & Levin, S. A. (1989b). The role of long incubation periods in the dynamics of HIV/AIDS. Part 2: Multiple group models). In C. Castillo-Chavez (Ed.), Lecture notes in biomathematics: Vol. 83. Mathematical and statistical approaches to AIDS epidemiology (p. 200). Berlin: Springer. Google Scholar
  9. Centers for Disease Control and Prevention (2009a). http://www.cdc.gov/h1n1flu/background.htm. Accessed 27 October 2009.
  10. Centers for Disease Control and Prevention (2009b). http://www.cdc.gov/h1n1flu/recommendations.htm. Accessed 27 October 2009.
  11. Centers for Disease Control and Prevention (2009c). http://www.cdc.gov/media/pressrel/2009/r090729b.htm. Accessed 27 October 2009.
  12. Centers for Disease Control and Prevention (2009d). Outbreak of swine-origin influenza A (H1N1) virus infection-Mexico, March–April 2009. Morb. Mort. Wkly. Rep., 58, 1–3. Google Scholar
  13. Centers for Disease Control and Prevention (2009e). http://www.cdc.gov/h1n1flu/identifyingpatients.htm#incubationperiod. Accessed 27 October 2009.
  14. Chowell, G., et al. (2009). Severe respiratory disease concurrent with the circulation of H1N1 influenza. N. Engl. J. Med., 361, 674–679. CrossRefGoogle Scholar
  15. Cox, N., Bridges, C., Levandowski, R., & Katz, J. (2008). Influenza vaccine (inactivated). In S. Plotkin, W. Orenstein, & P. Offit (Eds.), Vaccines (pp. 259–290). Amsterdam: Elsevier. Google Scholar
  16. Demicheli, V., Di Pietrantonj, C., Jefferson, T., Rivetti, A., & Rivetti, D. (2009). Vaccines for preventing influenza in healthy adults (review). The Cochrane collaboration. New York: Wiley. Google Scholar
  17. Dushoff, J., Wenzhang, H., & Castillo-Chavez, C. (1998). Backwards bifurcations and catastrophe in simple models of fatal diseases. J. Math. Biol., 36, 227–248. MathSciNetMATHCrossRefGoogle Scholar
  18. El Universal, 6 April 2009. http://www.eluniversal.com.mx/hemeroteca/edicion_impresa_20090406.html. Accessed 27 October 2009.
  19. Elbasha, E. H., & Gumel, A. B. (2006). Theoretical assessment of public health impact of imperfect prophylactic HIV-1 vaccines with therapeutic benefits. Bull. Math. Biol., 68, 577–614. CrossRefGoogle Scholar
  20. Feng, Z., Castillo-Chavez, C., & Capurro, F. (2000). A model for tuberculosis with exogenous reinfection. Theor. Popul. Biol., 57, 235. MATHCrossRefGoogle Scholar
  21. FluWatch (2010). Weekly reports 2009–2010 season. http://www.phac-aspc.gc.ca/fluwatch/index-eng.php. Accessed 11 January 2010.
  22. Franco-Paredes, P. C., & Preciado, J. I. S. (2009). The first influenza pandemic in the new millennium: lessons learned hitherto for current control efforts and overall pandemic preparedness. J. Immune Based Therap. Vaccines. doi:10.1186/1476-8518-7-2. Google Scholar
  23. Fraser, C., Donnelly, C. A., Cauchemez, S., et al. (2009). Pandemic potential of a strain of influenza A (H1N1): early findings. Science, 324, 1557–1561. CrossRefGoogle Scholar
  24. GenBank (2009). Sequences from 2009 H1N1 influenza outbreak. http://www.ncbi.nlm.nih.gov/genomes/FLU/SwineFlu.html. Accessed 27 October 2009.
  25. Gomez-Acevedo, H., & Li, M. Y. (2005). Backward bifurcation in a model for HTLV-I infection of CD4+ T cells. Bull. Math. Biol., 67(1), 101. MathSciNetCrossRefGoogle Scholar
  26. Greenberg, M. E., Lai, M. H., Hartel, G. F., Wichems, C. H., Gittleson, C., Bennet, J., Dawson, G., Hu, W., Leggio, C., Washington, D., & Basser, R. L. (2009). Response after one dose of a monovalent influenza A (H1N1) 2009 vaccine—preliminary report. N. Engl. J. Med., 361(25), 2405–2413. CrossRefGoogle Scholar
  27. Gumel, A. B., Nuno, M., & Chowell, G. (2008). Mathematical assessment of Canada’s pandemic preparedness plan. Can. J. Infect. Dis. Med. Microbiol., 19(2), 185–192. Google Scholar
  28. Hadeler, K. P., & Castillo-Chavez, C. (1995). A core group model for disease transmission. Math. Biosci., 128, 41. MATHCrossRefGoogle Scholar
  29. Hale, J. K. (1969). Ordinary differential equations. New York: Wiley. MATHGoogle Scholar
  30. Hethcote, H. W. (2000). The mathematics of infectious diseases. SIAM Rev., 42(4), 599–653. MathSciNetMATHCrossRefGoogle Scholar
  31. Hiroshi, N., Don, K., Mick, R., & Johan, A. P. H. (2009). Early epidemiological assessment of the virulence of emerging infectious diseases: a case study of an influenza pandemic. PLoS ONE. doi:10.1371/journal.pone.0006852.s001. Google Scholar
  32. Jamieson, D. J., Honein, M. A., Rasmussen, S. A., et al. (2009). H1N1 2009 influenza virus infection during pregnancy in the USA. Lancet, 374(9688), 451–458. CrossRefGoogle Scholar
  33. Kribs-Zaleta, C., & Valesco-Hernandez, J. (2000). A simple vaccination model with multiple endemic states. Math. Biosci., 164, 183. MATHCrossRefGoogle Scholar
  34. Kumar, A., Zarychanski, R., Pinto, R., et al. (2009). Critically ill patients with 2009 influenza A(H1N1) infection in Canada. JAMA, 302(17), 1872–1879. doi:10.1001/jama.2009.1496 CrossRefGoogle Scholar
  35. Lakshmikantham, V., Leela, S., & Martynyuk, A. A. (1989). Stability analysis of nonlinear systems. New York: Marcel Dekker. MATHGoogle Scholar
  36. Lipsitch, M., & Murray, M. B. (2003). Multiple equilibria: tuberculosis transmission require unrealistic assumptions. Theor. Popul. Biol., 63(2), 169–170. CrossRefGoogle Scholar
  37. Mahmud, S. M., Becker, M., Keynan, Y., Elliot, L., et al. (2010, submitted). Serological survey of the pandemic influenza A H1N1 in Manitoba, Summer 2009. J. Infect. Dis. Google Scholar
  38. Manitoba Health (2009). Confirmed cases of H1N1 flu in Manitoba. http://www.gov.mb.ca/health/publichealth/sri/cases.html. Accessed 27 October 2009.
  39. Miriam, N., Chowell, G., & Gumel, A. B. (2007). Assessing transmission control measures, antivirals and vaccine in curtailing pandemic influenza: scenarios for the US, UK, and the Netherlands. Proc. R. Soc. Interface, 4(14), 505–521. CrossRefGoogle Scholar
  40. Nishiura, H., Castillo-Chavez, C., Safan, M., & Chowell, G. (2009). Transmission potential of the new influenza A(H1N1) virus and its age-specificity in Japan. Euro Surveill., 14, 19227. Google Scholar
  41. Podder, C. N., & Gumel, A. B. (2009). Qualitative dynamics of a vaccination model for HSV-2. IMA J. Appl. Math. doi:10.1093/imamat/hxp030. MATHGoogle Scholar
  42. Pourbohloul, B., et al. (2009). Initial human transmission dynamics of the pandemic (H1N1) 2009 virus in North America. Influenza Other Respir. Viruses, 3(5), 215–222. CrossRefGoogle Scholar
  43. Sharomi, O., & Gumel, A. B. (2009). Re-infection-induced backward bifurcation in the transmission dynamics of Chlamydia trachomatis. J. Math. Anal. Appl., 356, 96–118. MathSciNetMATHCrossRefGoogle Scholar
  44. Sharomi, O., Podder, C. N., Gumel, A. B., Elbasha, E. H., & Watmough, J. (2007). Role of incidence function in vaccine-induced backward bifurcation in some HIV models. Math. Biosci., 210, 436–463. MathSciNetMATHCrossRefGoogle Scholar
  45. Sharomi, O., Podder, C. N., Gumel, A. B., & Song, B. (2008). Mathematical analysis of the transmission dynamics of HIV/TB co-infection in the presence of treatment. Math. Biosci. Eng., 5(1), 145–174. MathSciNetMATHGoogle Scholar
  46. Simon, C. P., & Jacquez, J. A. (1992). Reproduction numbers and the stability of equilibrium of SI models for heterogeneous populations. SIAM J. Appl. Math., 52, 541. MathSciNetMATHCrossRefGoogle Scholar
  47. Statistics Canada (2009a). Population urban and rural, by province and territory (Manitoba). http://www40.statcan.gc.ca/l01/cst01/demo62h-eng.htm. Accessed 27 October 2009.
  48. Statistics Canada (2009b). Life expectancy at birth, by sex, by province. http://www40.statcan.gc.ca/l01/cst01/health26-eng.htm. Accessed 27 October 2009.
  49. United States Centers for Disease Control and Prevention (2009). Pregnant women and novel influenza A (H1N1): considerations for clinicians. http://www.cdc.gov/h1n1flu/clinician_pregnant.htm. Accessed 5 November 2009.
  50. United States Centers for Disease Control (2009). Information on people at high risk of developing flu-related complications. http://www.cdc.gov/h1n1flu/highrisk.htm. Accessed 5 November 2009.
  51. van den Driessche, P., & Watmough, J. (2002). Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci., 180, 29–48. MathSciNetMATHCrossRefGoogle Scholar
  52. van der Vries, E., Jonges, M., Herfst, S., Maaskant, J., Van der Linden, A., Guldemeester, J., Aron, G.I., Bestebroer, T.M., Koopmans, M., Meijer, A., Fouchier, R.A., Osterhaus, A.D., Boucher, C.A., & Schutten, M. (2009). Evaluation of a rapid molecular algorithm for detection of pandemic influenza A (H1N1) 2009 virus and screening for a key oseltamivir resistance (H275Y) substitution in neuraminidase. Clin. Virol. doi:10.1016/j.jcv.2009.09.030. Google Scholar
  53. Wang, W. (2006). Backward bifurcation of an epidemic model with treatment. Math. Biosci., 201(1–2), 58. MathSciNetMATHCrossRefGoogle Scholar
  54. Winnipeg Regional Health Authority Report (2009). Outbreak of novel H1N1 influenza A virus in the Winnipeg health region. http://www.wrha.mb.ca/. Accessed 4 November 2009.
  55. World Health Organization (2009a). Pandemic (H1N1) (2009)—update 71. http://www.who.int/csr/don/2009_10_23/en/index.html. Accessed 27 October 2009.
  56. World Health Organization (2009b). Influenza A (H1N1)—update 49. Global Alert and Response (GAR). http://www.who.int/csr/don/2009_06_15/en/index.html. Accessed 27 October 2009.
  57. World Health Organization (2009c). Statement by Director-General. 11 June 2009. Google Scholar
  58. World Health Organization (2009d). Pandemic (H1N1) (2009)—update 72. http://www.who.int/csr/don/2009_10_30/en/index.html. Accessed 31 October 2009.
  59. World Health Organization (2009e). Human infection with pandemic A (H1N1) 2009 infuenza virus: clinical observations in hospitalized patients, Americas, July 2009—update. Wkly. Epidemiol. Rec. 84, 305–308. Google Scholar
  60. World Health Organization (2009f). Alert and response: http://www.who.int/csr/disease/swineflu/updates/en/index.html. Accessed 02 November 2009.
  61. World Health Organization (2009g). Human infection with new influenza A (H1N1) virus: clinical observations from Mexico and other affected countries. Wkly. Epidemiol. Rec., 84, 185. http://www.who.int/wer/2009/wer8421.pdf. Accessed 5 November 2009. Google Scholar

Copyright information

© Society for Mathematical Biology 2010

Authors and Affiliations

  • O. Sharomi
    • 1
  • C. N. Podder
    • 1
  • A. B. Gumel
    • 1
  • S. M. Mahmud
    • 2
  • E. Rubinstein
    • 3
  1. 1.Department of MathematicsUniversity of ManitobaWinnipegCanada
  2. 2.Department of Community Health SciencesUniversity of ManitobaWinnipegCanada
  3. 3.Department of Medical Microbiology and Department of Internal MedicineUniversity of ManitobaWinnipegCanada

Personalised recommendations