Advertisement

Bulletin of Mathematical Biology

, Volume 73, Issue 1, pp 116–150 | Cite as

Estimation of Cell Proliferation Dynamics Using CFSE Data

  • H. T. BanksEmail author
  • Karyn L. Sutton
  • W. Clayton Thompson
  • Gennady Bocharov
  • Dirk Roose
  • Tim Schenkel
  • Andreas Meyerhans
Original Article

Abstract

Advances in fluorescent labeling of cells as measured by flow cytometry have allowed for quantitative studies of proliferating populations of cells. The investigations (Luzyanina et al. in J. Math. Biol. 54:57–89, 2007; J. Math. Biol., 2009; Theor. Biol. Med. Model. 4:1–26, 2007) contain a mathematical model with fluorescence intensity as a structure variable to describe the evolution in time of proliferating cells labeled by carboxyfluorescein succinimidyl ester (CFSE). Here, this model and several extensions/modifications are discussed. Suggestions for improvements are presented and analyzed with respect to statistical significance for better agreement between model solutions and experimental data. These investigations suggest that the new decay/label loss and time dependent effective proliferation and death rates do indeed provide improved fits of the model to data. Statistical models for the observed variability/noise in the data are discussed with implications for uncertainty quantification. The resulting new cell dynamics model should prove useful in proliferation assay tracking and modeling, with numerous applications in the biomedical sciences.

Keywords

Cell proliferation CFSE Label structured population dynamics Partial differential equations Inverse problems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Banks, H.T., Davis, J.L., 2007. A comparison of approximation methods for the estimation of probability distributions on parameters. Appl. Numer. Math. 57, 753–777. zbMATHCrossRefMathSciNetGoogle Scholar
  2. Banks, H.T., Fitzpatrick, B.G., 1989. Inverse problems for distributed systems: statistical tests and ANOVA. In: Proc. International Symposium on Math. Approaches to Envir. and Ecol. Problems, Springer Lecture Note in Biomath., vol. 81, pp. 262–273. Springer, Berlin. LCDS/CCS Rep. 88-16, July, 1988, Brown University. Google Scholar
  3. Banks, H.T., Fitzpatrick, B.G., 1990. Statistical methods for model comparison in parameter estimation problems for distributed systems. J. Math. Biol. 28, 501–527. CAMS Tech. Rep. 89-4, September, 1989, University of Southern California. zbMATHCrossRefMathSciNetGoogle Scholar
  4. Banks, H.T., Fitzpatrick, B.G., 1991. Estimation of growth rate distributions in size-structured population models. Quart. Appl. Math. 49, 215–235. CAMS Tech. Rep. 90-2, January, 1990, University of Southern California. zbMATHMathSciNetGoogle Scholar
  5. Banks, H.T., Iles, D.W., 1987. On compactness of admissible parameter sets: convergence and stability in inverse problems for distributed parameter systems. In: Proc. Conf. on Control Systems Governed by PDE’s, February, 1986, Gainesville, FL. Springer Lecture Notes in Control & Inf. Science, vol. 97, pp. 130–142. Springer, Berlin. ICASE Report #86-38, NASA Langley Res. Ctr., Hampton VA 1986. Google Scholar
  6. Banks, H.T., Kunsich, K., 1989. Estimation Techniques for Distributed Parameter Systems. Birkhauser, Boston. zbMATHGoogle Scholar
  7. Banks, H.T., Lybeck, N., 1996. Modeling methodology for elastomer dynamics. In: Systems and Control in the 21st Century, pp. 37–50. Birkhauser, Boston. CRSC-TR96-29, NCSU, September, 1996. Google Scholar
  8. Banks, H.T., Pedersen, M., 2009. Well-posedness of inverse problems for systems with time dependent parameters. Arab. J. Sci. Eng. Math. 1, 39–58. CRSC-TR08-10, August, 2008. zbMATHGoogle Scholar
  9. Banks, H.T., Samuels, J.R., 2009. Detection of cardiac occlusions using viscoelastic wave propagation. Adv. Appl. Math. Mech. 1, 1–28. CRSC-TR08-23, December, 2008. MathSciNetGoogle Scholar
  10. Banks, H.T., Tran, H.T., 2009. Mathematical and Experimental Modeling of Physical and Biological Processes. CRC Press, Boca Raton. zbMATHGoogle Scholar
  11. Banks, H.T., Botsford, L.W., Kappel, F., Wang, C., 1988. Modeling and estimation in size structured population models. LCDC-CSS Report 87-13, Brown University; Proceedings 2nd Course on Mathematical Ecology (Trieste, December 8–12, 1986) World Press, Singapore, pp. 521–541. Google Scholar
  12. Banks, H.T., Smith, R.C., Wang, Y., 1996. Smart Material Structures: Modeling, Estimation and Control. Masson Series on Research in Applied Math. Masson/Wiley, Paris/New York. zbMATHGoogle Scholar
  13. Banks, H.T., Bortz, D.M., Holte, S.E., 2003. Incorporation of variability into the modeling of viral delays in HIV infection dynamics. Math. Biosci. 183, 63–91. zbMATHCrossRefMathSciNetGoogle Scholar
  14. Banks, H.T., Davidian, M., Samuels, Jr., J.R., Sutton, Karyn L., 2009. An inverse problem statistical methodology summary. In: Chowell, G., Hyman, M., Hengartner, N., Bettencourt, L.M.A., Castillo-Chavez, C. (Eds.), Statistical Estimation Approaches in Epidemiology, pp. 249–302. Springer, Berlin. CRSC-TR08-01, January, 2008. CrossRefGoogle Scholar
  15. Banks, H.T., Holm, K., Robbins, D., 2010. Standard error computations for uncertainty quantification in inverse problems: Asymptotic theory vs. bootstrapping. Arab. J. Sci. Eng. Math., submitted. CRSC-TR09-13, June, 2009; Revised August, 2009. Google Scholar
  16. Bell, G., Anderson, E., 1967. Cell growth and division I. A mathematical model with applications to cell volume distributions in mammalian suspension cultures. Biophys. J. 7, 329–351. CrossRefGoogle Scholar
  17. Bellomo, N., Preziosi, L., 2000. Modelling and mathematical problems related to tumor evolution and its integration with the immune system. Math. Comput. Model. 32, 413–452. zbMATHCrossRefMathSciNetGoogle Scholar
  18. Bernard, S., Pujo-Menjouet, L., Mackey, M.C., 2003. Analysis of cell kinetics using a cell division marker: Mathematical modeling of experimental data. Biophys. J. 84, 3414–3424. CrossRefGoogle Scholar
  19. Bird, J.J., Brown, D.R., Mullen, A.C., Moskowitz, N.H., Mahowald, M.A., Sider, J.R., Ajewski, T.F., Wang, C., Reiner, S.L., 1998. Helper T cell differentiation is controlled by the cell cycle. Immunity 9, 229–237. CrossRefGoogle Scholar
  20. Bonhoeffer, S., Mohri, H., Ho, D., Perleson, A.S., 2000. Quantification of cell turnover kinetics using 5-Bromo-2′-deoxyuridine. J. Immunol. 164, 5049–5054. Google Scholar
  21. Carroll, R.J., Ruppert, D., 2000. Transformation and Weighting in Regression. Chapman & Hall, London. Google Scholar
  22. Chao, D.L., Davenport, M.P., Forrest, S., Perleson, A.S., 2003. Stochastic stage-structured modeling of the adaptive immune system. In: Proceedings of the 2003 IEEE Bioinformatics Conference (CSB 2003), pp. 124–131, Albuquerque, August 11–14, 2003. Google Scholar
  23. Davidian, M., Giltinan, D.M., 1995. Nonlinear Models for Repeated Measurement Data. Chapman & Hall, London. Google Scholar
  24. de Boer, R.J., Ganusov, V.V., Milutinovic, D., Hodgkin, P., Perelson, A.S., 2006. Estimating lymphocyte division and death rates from CFSE data. Bull. Math. Biol. 68, 1011–1031. CrossRefGoogle Scholar
  25. Fung, Y.C., 1993. Biomechanics: Mechanical Properties of Living Tissue. Springer, Berlin. Google Scholar
  26. Fung, Y.C., 1994. A First Course in Continuum Mechanics. Prentice Hall, Englewood Cliffs. Google Scholar
  27. Ganusov, V.V., Pilyugin, S.S., de Boer, R.J., Murali-Krishna, K., Ahmed, R., Anti, R., 2005. Quantifying cell turnover using CFSE data. J. Immunol. Methods 298, 183–200. CrossRefGoogle Scholar
  28. Gett, A.V., Hodgkin, P.D., 1998. Cell division regulates the T cell cytokine repertoire, revealing a mechanism underlying immune class regulation. Proc. Natl. Acad. Sci. USA. 95, 9488–9493. CrossRefGoogle Scholar
  29. Gett, A.V., Hodgkin, P.D., 2000. A cellular calculus for signal integration by T cells. Nat. Immunol. 1, 239–244. CrossRefGoogle Scholar
  30. Gyllenberg, M., Webb, G.F., 1990. A nonlinear structured population model of tumor growth with quiescence. J. Math. Biol. 28, 671–694. zbMATHCrossRefMathSciNetGoogle Scholar
  31. Hawkins, E.D., Hommel, M., Turner, M.L., Battye, F., Markham, J., Hodgkin, P.D., 2007. Measuring lymphocyte proliferation, survival and differentiation using CFSE time-series data. Nat. Protocols 2, 2057–2067. CrossRefGoogle Scholar
  32. Hawkins, E.D., Turner, M.L., Dowling, M.R., van Gend, C., Hodgkin, P.D., 2007. A model of immune regulation as a consequence of randomized lymphocyte division and death times. Proc. Natl. Acad. Sci. 104(12), 5032–5037. CrossRefGoogle Scholar
  33. Hodgkin, P.D., Go, N.F., Cupp, J.E., Howard, M., 1996. Interleukin-4 enhances anti-IgM stimulation of B cells by improving cell viability and by increasing the sensitivity of B cells to the anti-IgM signal. Cell. Immunol. 134, 14–30. CrossRefGoogle Scholar
  34. Komarova, N.L., 2006. Stochastic modeling of drug resistance in cancer. J. Theor. Biol. 239, 351–366. CrossRefMathSciNetGoogle Scholar
  35. Komarova, N.L., Wodarz, D., 2007. Effect of cellular quiescence on the success of targeted CML therapy. In: PloS ONE, vol. 2, p. 10, e990. Google Scholar
  36. Lee, H.Y., Hawkins, E.D., Zand, M.S., Mosmann, T., Wu, H., Hodgkin, P.D., Perelson, A.S., 2009. Interpreting CFSE obtained division histories of B cells in vitro with Smith-Martin and cyton type models. Bull. Math Biol. 71, 1649–1670. zbMATHCrossRefMathSciNetGoogle Scholar
  37. León, K., Faro, J., Carneiro, J., 2004. A general mathematical framework to model generation structure in a population of asynchronously dividing cells. J. Theor. Biol. 229, 455–476. CrossRefGoogle Scholar
  38. Luzyanina, T., Mrusek, S., Edwards, J.T., Roose, D., Ehl, S., Bocharov, G., 2007. Computational analysis of CFSE proliferation assay. J. Math. Biol. 54, 57–89. zbMATHCrossRefMathSciNetGoogle Scholar
  39. Luzyanina, T., Roose, D., Schenkel, T., Sester, M., Ehl, S., Meyerhans, A., Bocharov, G., 2007. Numerical modelling of label-structured cell population growth using CFSE distribution data. Theor. Biol. Med. Model. 4, 1–26. CrossRefGoogle Scholar
  40. Luzyanina, T., Roose, D., Bocharov, G., 2009. Distributed parameter identification for a label-structured cell population dynamics model using CFSE histogram time-series data. J. Math. Biol. 59, 581–603. zbMATHCrossRefMathSciNetGoogle Scholar
  41. Lyons, A.B., 1999. Divided we stand: tracking cell proliferation with carboxyfluorescein diacetate succinimidyl ester. Immunol. Cell Biol. 77, 509–515. CrossRefGoogle Scholar
  42. Lyons, A.B., Doherty, K.V., 2004. Flow cytometric analysis of cell division by dye dilution. Curr. Protocols Cytom. 9.11.1–9.11.10. Google Scholar
  43. Lyons, A.B., Parish, C.R., 1994. Determination of lymphocyte division by flow cytometry. J. Immunol. Methods 171, 131–137. CrossRefGoogle Scholar
  44. Marsden, J.E., Hughes, T.J.R., 1994. Mathematical Foundations of Elasticity. Dover, Mineola. Google Scholar
  45. Matera, G., Lupi, M., Ubezio, P., 2004. Heterogeneous cell response to topotecan in a CFSE-based proliferative test. Cytometry A 62, 118–128. CrossRefGoogle Scholar
  46. Ogden, R.W., 1984. Non-Linear Elastic Deformations. Dover, Mineola. Google Scholar
  47. Quah, B., Warren, H., Parish, C., 2007. Monitoring lymphocyte proliferation in vitro and in vivo with the intracellular fluorescent dye carboxyfluorescein diacetate succinimidyl ester. Nat. Protocols 2, 2049–2056. CrossRefGoogle Scholar
  48. Seber, G.A.F., Wild, C.J., 2003. Nonlinear Regression. Wiley, Hoboken. Google Scholar
  49. Shampine, L.F., 2005. Solving hyperbolic PDEs in MATLAB. Appl. Numer. Anal. Comput. Math. 2, 346–358. zbMATHCrossRefMathSciNetGoogle Scholar
  50. Sinko, J., Streifer, W., 1967. A new model for age-size structure of a population. Ecology 48, 910–918. CrossRefGoogle Scholar
  51. Smith, J.A., Martin, L., 1973. Do cells cycle? Proc. Natl. Acad. Sci. USA 70, 1263–1267. CrossRefGoogle Scholar

Copyright information

© Society for Mathematical Biology 2010

Authors and Affiliations

  • H. T. Banks
    • 1
    Email author
  • Karyn L. Sutton
    • 1
  • W. Clayton Thompson
    • 1
  • Gennady Bocharov
    • 2
  • Dirk Roose
    • 3
  • Tim Schenkel
    • 4
  • Andreas Meyerhans
    • 5
  1. 1.Center for Research in Scientific Computation, Center for Quantitative Science in BiomedicineNorth Carolina State UniversityRaleighUSA
  2. 2.Institute of Numerical MathematicsRASMoscowRussia
  3. 3.Department of Computer ScienceKatholieke UniversiteitLuevenBelgium
  4. 4.Department of VirologyUniversity of the SaarlandHomburgGermany
  5. 5.Department of Experimental and Health SciencesUniversitat Pompeu FabraBarcelonaSpain

Personalised recommendations