Bulletin of Mathematical Biology

, Volume 73, Issue 1, pp 72–115 | Cite as

Asymptotics of Conduction Velocity Restitution in Models of Electrical Excitation in the Heart

  • R. D. Simitev
  • V. N. Biktashev
Original Article


We extend a non-Tikhonov asymptotic embedding, proposed earlier, for calculation of conduction velocity restitution curves in ionic models of cardiac excitability. Conduction velocity restitution is the simplest non-trivial spatially extended problem in excitable media, and in the case of cardiac tissue it is an important tool for prediction of cardiac arrhythmias and fibrillation. An idealized conduction velocity restitution curve requires solving a non-linear eigenvalue problem with periodic boundary conditions, which in the cardiac case is very stiff and calls for the use of asymptotic methods. We compare asymptotics of restitution curves in four examples, two generic excitable media models, and two ionic cardiac models. The generic models include the classical FitzHugh–Nagumo model and its variation by Barkley. They are treated with standard singular perturbation techniques. The ionic models include a simplified “caricature” of Noble (J. Physiol. Lond. 160:317–352, 1962) model and Beeler and Reuter (J. Physiol. Lond. 268:177–210, 1977) model, which lead to non-Tikhonov problems where known asymptotic results do not apply. The Caricature Noble model is considered with particular care to demonstrate the well-posedness of the corresponding boundary-value problem. The developed method for calculation of conduction velocity restitution is then applied to the Beeler–Reuter model. We discuss new mathematical features appearing in cardiac ionic models and possible applications of the developed method.


Action potential Traveling wave 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abramowitz, M., Stegun, I.A. (Eds.), 1965. Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables. Dover, New York. Google Scholar
  2. Amos, D.E., 1974. Computation of modified Bessel functions and their ratios. Math. Comput. 28(125), 239–251. zbMATHCrossRefMathSciNetGoogle Scholar
  3. Aronson, D.G., Weinberger, H.F., 1978. Multidimensional non-linear diffusion arising in population genetics. Adv. Math. 30(1), 33–76. zbMATHCrossRefMathSciNetGoogle Scholar
  4. Ascher, U., Russell, R.D., 1981. Reformulation of boundary value problems into “standard” form. SIAM Rev. 23, 238–254. zbMATHCrossRefMathSciNetGoogle Scholar
  5. Barkley, D., 1991. A model for fast computer simulation of waves in excitable media. Physica D 49, 61–70. CrossRefGoogle Scholar
  6. Beeler, G.W., Reuter, H., 1977. Reconstruction of the action potential of ventricular myocardial fibres. J. Physiol. Lond. 268, 177–210. Google Scholar
  7. Biktashev, V.N., 2002. Dissipation of the excitation wavefronts. Phys. Rev. Lett. 89(16), 168102. CrossRefGoogle Scholar
  8. Biktashev, V.N., Suckley, R., 2004. Non-Tikhonov asymptotic properties of cardiac excitability. Phys. Rev. Lett. 93(16), 168103. CrossRefGoogle Scholar
  9. Biktashev, V.N., Tsyganov, M.A., 2005. Solitary waves in excitable systems with cross-diffusion. Proc. R. Soc. Lond., Ser. A 461(2064), 3711–3730. zbMATHCrossRefMathSciNetGoogle Scholar
  10. Biktashev, V.N., Suckley, R.S., Elkin, Y.E., Simitev, R.D., 2008. Asymptotic analysis and analytical solutions of a model of cardiac excitation. Bull. Math. Biol. 70(2), 517–554. zbMATHCrossRefMathSciNetGoogle Scholar
  11. Biktasheva, I.V., Simitev, R.D., Suckley, R.S., Biktashev, V.N., 2006. Asymptotic properties of mathematical models of excitability. Philos. Trans. R. Soc. Lond., Ser. A 364(1842), 1283–1298. zbMATHCrossRefMathSciNetGoogle Scholar
  12. Boyett, R., Jewell, B.R., 1978. A study of the factors responsible for rate-dependent shortening of the action potential in mammalian ventricular muscle. J. Physiol. Lond. 285, 359–380. Google Scholar
  13. Chen, W., Potse, M., Vinet, A., 2007. Dynamics of sustained reentry in a loop model with discrete gap junction resistances. Phys. Rev. E 76, 021928. CrossRefGoogle Scholar
  14. Chialvo, D.R., Michaels, D.C., Jalife, J., 1990. Supernormal excitability as a mechanism of chaotic dynamics of activation in cardiac Purkinje fibers. Circ. Res. 66, 525–545. Google Scholar
  15. Clayton, R.H., 2001. Computational models of normal and abnormal action potential propagation in cardiac tissue: linking experimental and clinical cardiology. Physiol. Meas. 22, R15–R34. CrossRefGoogle Scholar
  16. Corless, R.M., Gonnet, G.H., Hare, D.E.G., Jeffrey, D.J., Knuth, D.E., 1996. On the Lambert W function. Adv. Comput. Math. 5, 329–359. zbMATHCrossRefMathSciNetGoogle Scholar
  17. Courtemanche, M., 1996. Complex spiral wave dynamics in a spatially distributed ionic model of cardiac electrical activity. Chaos 6, 579–600. CrossRefGoogle Scholar
  18. Courtemanche, M., Glass, L., Keener, J.P., 1993. Instabilities of a propagating pulse in a ring of excitable media. Phys. Rev. Lett. 70, 2182–2185. CrossRefGoogle Scholar
  19. Dockery, J.D., Keener, J.P., 1989. Diffusive effects on dispersion in excitable media. SIAM J. Appl. Math. 49(2), 539–566. zbMATHCrossRefMathSciNetGoogle Scholar
  20. Dokos, S., Lovell, N.H., 2004. Parameter estimation in cardiac ionic models. Prog. Biophys. Mol. Biol. 85, 407–431. CrossRefGoogle Scholar
  21. Echebarria, B., Karma, A., 2007. Amplitude equation approach to spatiotemporal dynamics of cardiac alternans. Phys. Rev. E 76, 051911. CrossRefMathSciNetGoogle Scholar
  22. FitzHugh, R., 1961. Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1, 445–456. CrossRefGoogle Scholar
  23. Garfinkel, A., Kim, Y.H., Voroshilovsky, O., Qu, Z., Kil, J.R., Lee, M.H., Karagueuzian, H.S., Weiss, J.N., Chen, P.S., 2000. Preventing ventricular fibrillation by flattening cardiac restitution. Proc. Natl. Acad. Sci. USA 97, 6061–6066. CrossRefGoogle Scholar
  24. Gorban, A.N., Karlin, I.V., 2005. Invariant Manifolds for Physical and Chemical Kinetics. Springer Lect. Notes Phys., vol. 660, Springer, Berlin. zbMATHGoogle Scholar
  25. Hakim, V., Karma, A., 1999. Theory of spiral wave dynamics in weakly excitable media: Asymptotic reduction to a kinematic model and applications. Phys. Rev. E 60(5), 5073–5105. CrossRefMathSciNetGoogle Scholar
  26. Heineken, F.G., Tsuchiya, H.M., Aris, R., 1967. On the mathematical status of the pseudo-steady state hypothesis of biochemical kinetics. Math. Biosci. 1, 95–113. CrossRefGoogle Scholar
  27. Herman, D., Prevorovska, S., Marsik, F., 2007. Determination of myocardial energetic output for cardiac rhythm pacing. Cardiovasc. Eng 7, 156–161. CrossRefGoogle Scholar
  28. Hinch, R., 2002. An analytical study of the physiology and pathology of the propagation of cardiac action potentials. Prog. Biophys. Mol. Biol. 78, 45–81. CrossRefGoogle Scholar
  29. Hodgkin, A.L., Huxley, A.F., 1952. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. Lond. 117, 500–544. Google Scholar
  30. Ito, H., Glass, L., 1992. Theory of reentrant excitation in a ring of cardiac tissue. Physica D 56, 84–106. CrossRefGoogle Scholar
  31. Jones, C.K.R.T., 1995. In: Geometric Singular Perturbation Theory. Springer Lect. Notes in Math., vol. 1609, pp. 44–118. Springer, Berlin Google Scholar
  32. Kaper, H.G., Kaper, T.J., 2002. Asymptotic analysis of two reduction methods for systems of chemical reactions. Physica D 165, 66–93. zbMATHCrossRefMathSciNetGoogle Scholar
  33. Kaper, T.J., 1999. An introduction to geometric methods and dynamical systems theory for singular perturbation problems. AMS Proc. Symp. Appl. Math. 56, 85–132. MathSciNetGoogle Scholar
  34. Karma, A., 1994. Electrical alternans and spiral wave breakup in cardiac tissue. Chaos 4, 461–472. CrossRefGoogle Scholar
  35. Karma, A., Levine, H., Zou, X., 1994. Theory of pulse instabilities in electrophysiological models of excitable tissues. Physica D 73, 113–127. zbMATHCrossRefGoogle Scholar
  36. Keener, J.P., 1980. Waves in excitable media. SIAM J. Appl. Math. 39(3), 528–548. zbMATHCrossRefMathSciNetGoogle Scholar
  37. Keener, J.P., 1991. The effects of discrete gap junction coupling on propagation in myocardium. J. Theor. Biol. 148, 49–82. CrossRefGoogle Scholar
  38. Keener, J.P., Sneyd, J., 1991. Mathematical Physiology. Springer, Berlin. Google Scholar
  39. McKean, H.P., 1970. Nagumo’s equation. Adv. Math. 4, 209–223. zbMATHCrossRefMathSciNetGoogle Scholar
  40. Meron, E., 1992. Pattern formation in excitable media. Phys. Rep. 218(1), 1–66. CrossRefMathSciNetGoogle Scholar
  41. Milnor, J.W., Spivak, M., Wells, R.O., 1963. Morse Theory. Princeton University Press, Princeton. zbMATHGoogle Scholar
  42. Mironov, S., Jalife, J., Tolkacheva, E.G., 2008. Role of conduction velocity restitution and short-term memory in the development of action potential duration alternans in isolated rabbit hearts. Circulation 118(1), 17–25. CrossRefGoogle Scholar
  43. Mishchenko, E.F., Rozov, N.K., 1980. Differential Equations with Small Parameters and Relaxation Oscillations. Plenum Press, New York. zbMATHGoogle Scholar
  44. Murray, J.D., 1991. Mathematical Biology. Springer, Berlin. Google Scholar
  45. NAG [Mark 20], ‘The Numerical Algorithms Group, Ltd. Fortran Library Manual’. Google Scholar
  46. Nagumo, J., Arimoto, S., Yoshizawa, S., 1962. An active pulse transmission line simulating nerve axon. Proc. IRE 50, 2061–2070. CrossRefGoogle Scholar
  47. Noble, D., 1960. Cardiac action and pacemaker potentials based on the Hodgkin–Huxley equations. Nature 188, 495–497. CrossRefGoogle Scholar
  48. Noble, D., 1962. A modification of the Hodgkin–Huxley equations applicable to Purkinje fibre action and pace-maker potentials. J. Physiol. Lond. 160, 317–352. Google Scholar
  49. Nolasco, J.B., Dahlen, R.W., 1968. A graphic method for the study of alternation in cardiac action potentials. J. Appl. Physiol. 25, 191–196. CrossRefGoogle Scholar
  50. Plank, G., Clayton, R., Boyd, D., Vigmond, E., 2006. Integrative biology: modelling heart attacks with supercomputers. Capab. Comput. 7, 4–9. The newsletter of the HPCx community. Google Scholar
  51. Pontryagin, L.S., 1957. The asymptotic behaviour of systems of differential equations with a small parameter multiplying the highest derivatives. Izv. Akad. Nauk SSSR, Ser. Mat. 21(5), 107–155. MathSciNetGoogle Scholar
  52. Schaeffer, D., Cain, J., Gauthier, D., Kalb, S., Oliver, R., Tolkacheva, E., Ying, W., Krassowska, W., 2007. An ionically based mapping model with memory for cardiac restitution. Bull. Math. Biol. 69, 459–482. zbMATHCrossRefMathSciNetGoogle Scholar
  53. Segel, L.A., Slemrod, M., 1989. The quasi-steady-state assumption: a case study in perturbation. SIAM Rev. 31, 446–477. zbMATHCrossRefMathSciNetGoogle Scholar
  54. Simitev, R.D., Biktashev, V.N., 2006. Conditions for propagation and block of excitation in an asympthotic model of atrial tissue. Biophys. J. 90, 2258–2269. CrossRefGoogle Scholar
  55. Suckley, R., Biktashev, V.N., 2003. The asymptotic structure of the Hodgkin–Huxley equations. Int. J. Bifurc. Chaos 13(12), 3805–3826. zbMATHCrossRefMathSciNetGoogle Scholar
  56. Tikhonov, A.N., 1952. Systems of differential equations, containing small parameters at the derivatives. Mat. Sb. 31(3), 575–586. Google Scholar
  57. Tyson, J.J., Keener, J.P., 1988. Singular perturbation theory of traveling waves in excitable media. Physica D 32, 327–361. zbMATHCrossRefMathSciNetGoogle Scholar
  58. van der Pol, B., 1920. A theory of the amplitude of free and forced triode vibrations. Radio Rev. 1, 701–710. Google Scholar
  59. Watanabe, T., Rautaharju, P.M., McDonald, T.F., 1995. Ventricular action potentials, ventricular extracellular potential, and the ECG of guinea pig. Circ. Res. 57, 362–373. Google Scholar
  60. Watanabe, T., Fenton, F., Evans, S., Hastings, H., Karma, A., 2001. Mechanisms for discordant alternans. J. Cardiovasc. Electrophysiol. 12, 196–206. CrossRefGoogle Scholar
  61. Maple. Waterloo Maple Inc. [Version 11]. Google Scholar
  62. Zagaris, A., Kaper, H.G., Kaper, T.J., 2004. Analysis of the computational singular perturbation reduction method for chemical kinetics. J. Nonlinear Sci. 14, 59–91. zbMATHCrossRefMathSciNetGoogle Scholar
  63. Zeeman, E.C., 1972. Differential Equations for the Heartbeat and Nerve Impulse. Mathematics Institute, University Of Warwick, Coventry. Google Scholar
  64. Zel’dovich, Y.B., Frank-Kamenetsky, D.A., 1938. Towards the theory of uniformly propagating flames. Dokl. AN SSSR 19, 693–697. Google Scholar

Copyright information

© Society for Mathematical Biology 2010

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of GlasgowGlasgowUK
  2. 2.Department of Mathematical SciencesUniversity of LiverpoolLiverpoolUK

Personalised recommendations