Bulletin of Mathematical Biology

, Volume 72, Issue 8, pp 2004–2018 | Cite as

Modeling Optimal Intervention Strategies for Cholera

  • Rachael L. Miller Neilan
  • Elsa Schaefer
  • Holly Gaff
  • K. Renee Fister
  • Suzanne LenhartEmail author
Original Article


While cholera has been a recognized disease for two centuries, there is no strategy for its effective control. We formulate a mathematical model to include essential components such as a hyperinfectious, short-lived bacterial state, a separate class for mild human infections, and waning disease immunity. A new result quantifies contributions to the basic reproductive number from multiple infectious classes. Using optimal control theory, parameter sensitivity analysis, and numerical simulations, a cost-effective balance of multiple intervention methods is compared for two endemic populations. Results provide a framework for designing cost-effective strategies for diseases with multiple intervention methods.


Cholera SIR model Sensitivity analysis Basic reproductive number Optimal control 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Blower, S.M., Dowlatabadi, H., 1994. Sensitivity and uncertainty analysis of complex models of disease transmission: an HIV model, as an example. Int. Stat. Rev. 2, 229–243. Google Scholar
  2. Codeço, C.T., 2001. Endemic and epidemic dynamics of cholera: the role of the aquatic reservoir. BMC Infect. Dis. doi: 10.1186/1471-2334-1-1. Google Scholar
  3. Colwell, R.R., et al., 2003. Reduction of cholera in Bangladeshi villages by simple filtration. Proc. Natl. Acad. Soc. USA 100, 1051–1055. doi: 10.1073/pnas.0237386100. CrossRefGoogle Scholar
  4. Fleming, W.H., Rishel, R.W., 1975. Deterministic and Stochastic Optimal Control. Springer, Berlin. zbMATHGoogle Scholar
  5. Hartley, D.M., Morris, J.G., Smith, D.L., 2006. Hyperinfectivity: a critical element in the ability of V. cholerae to cause epidemics? PLoS Med. 3(1), e7. doi: 10.1371/journal.pmed.0030007. CrossRefGoogle Scholar
  6. Hendrix, T.R., 1971. The pathophysiology of cholera. Bull. N. Y. Acad. Med. 47, 1169–1180. Google Scholar
  7. Kaper, J.B., Morris, J.G., Levine, M.M., 1995. Cholera. Clin. Microbiol. Rev. 8, 48–86. Google Scholar
  8. King, A., Ionides, E.L., Pascual, M., Bouma, M., 2008. Inapparent infections and cholera dynamics. Nature 454, 877–880. doi: 10.1038/nature07084. CrossRefGoogle Scholar
  9. Lenhart, S., Workman, J.T., 2007. Optimal Control Applied to Biological Models. Chapman & Hall, London. zbMATHGoogle Scholar
  10. Levine, M.M., et al., 1988. Volunteer studies of deletion mutants of vibrio cholerae 01 prepared by recombinant techniques. Infect. Immun. 56(1), 161–167. Google Scholar
  11. Longini, Jr., I.M., et al., 2007. Controlling endemic cholera with oral vaccines. PLoS Med. 4(11), 1776–1783. doi: 10.1371/journal.pmed.0040336. CrossRefGoogle Scholar
  12. Marino, S., Hogue, I.B., Ray, C.J., Kirschner, D.E., 2008. A methodology for performing global uncertainty and sensitivity analysis in systems biology. J. Theor. Biol. 254, 178–196. doi: 10.1016/j.jtbi.2008.04.011. CrossRefGoogle Scholar
  13. Merrell, D.S., Butler, S.M., 2002. Host-induced epidemic spread of the cholera bacterium. Nature 417, 642–645. doi: 10.1038/nature00778. CrossRefGoogle Scholar
  14. Naficy, A., et al., 1998. Treatment and vaccination strategies to control cholera in sub-Saharan refugee settings: a cost-effectiveness analysis. JAMA 279, 521–525. CrossRefGoogle Scholar
  15. Pierce, N.F., Banwell, J.G., et al., 1968. Controlled comparison of tetracycline and furazolidone in cholera. Br. Med. J. 3, 277–280. doi: 10.1136/bmj.3.5613.277. CrossRefGoogle Scholar
  16. Pontryagin, L.S., Boltyanskii, V.G., Gamkrelize, R.V., Mishchenko, E.F., 1967. The Mathematical Theory of Optimal Processes. Wiley, New York. Google Scholar
  17. Van den Driessche, P., Watmough, J., 2002. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 180, 29–48. CrossRefMathSciNetzbMATHGoogle Scholar
  18. World Health Organization, 2008. Cholera. Fact Sheet No. 107. Google Scholar
  19. World Health Organization, 2009. WHO position paper on Oral Rehydration Salts to reduce mortality from cholera.

Copyright information

© Society for Mathematical Biology 2010

Authors and Affiliations

  • Rachael L. Miller Neilan
    • 1
  • Elsa Schaefer
    • 2
  • Holly Gaff
    • 3
  • K. Renee Fister
    • 4
  • Suzanne Lenhart
    • 1
    Email author
  1. 1.Department of MathematicsUniversity of TennesseeKnoxvilleUSA
  2. 2.Department of MathematicsMarymount UniversityArlingtonUSA
  3. 3.Virginia Modeling, Analysis and Simulation Center and the School of Community and Environmental HealthOld Dominion UniversityNorfolkUSA
  4. 4.Department of Mathematics and StatisticsMurray State UniversityMurrayUSA

Personalised recommendations