Bulletin of Mathematical Biology

, Volume 72, Issue 7, pp 1840–1866 | Cite as

Quasi-steady State Reduction of Molecular Motor-Based Models of Directed Intermittent Search

  • Jay M. Newby
  • Paul C. BressloffEmail author
Original Article


We present a quasi-steady state reduction of a linear reaction-hyperbolic master equation describing the directed intermittent search for a hidden target by a motor-driven particle moving on a one-dimensional filament track. The particle is injected at one end of the track and randomly switches between stationary search phases and mobile nonsearch phases that are biased in the anterograde direction. There is a finite possibility that the particle fails to find the target due to an absorbing boundary at the other end of the track. Such a scenario is exemplified by the motor-driven transport of vesicular cargo to synaptic targets located on the axon or dendrites of a neuron. The reduced model is described by a scalar Fokker–Planck (FP) equation, which has an additional inhomogeneous decay term that takes into account absorption by the target. The FP equation is used to compute the probability of finding the hidden target (hitting probability) and the corresponding conditional mean first passage time (MFPT) in terms of the effective drift velocity V, diffusivity D, and target absorption rate λ of the random search. The quasi-steady state reduction determines V, D, and λ in terms of the various biophysical parameters of the underlying motor transport model. We first apply our analysis to a simple 3-state model and show that our quasi-steady state reduction yields results that are in excellent agreement with Monte Carlo simulations of the full system under physiologically reasonable conditions. We then consider a more complex multiple motor model of bidirectional transport, in which opposing motors compete in a “tug-of-war”, and use this to explore how ATP concentration might regulate the delivery of cargo to synaptic targets.


Intracellular transport Molecular motors Random search Quasi-steady state Axons Dendrites 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baas, P.W., Deitch, J.S., Black, M.M., Banker, G.A., 1988. Polarity orientation of microtubules in hippocampal neurons: uniformity in the axon and nonuniformity in the dendrite. Proc. Natl. Acad. Sci. USA 85, 8335–8339. CrossRefGoogle Scholar
  2. Bannai, H., Inoue, T., Nakayama, T., Hattori, M., Mikoshiba, K., 2004. Kinesin dependent, rapid bidirectional transport of ER sub-compartment in dendrites of hippocampal neurons. J. Cell Sci. 117, 163–175. CrossRefGoogle Scholar
  3. Bean, A.J. (Ed.), 2007. Protein Trafficking in Neurons. Academic Press, San Diego. Google Scholar
  4. Bell, J.W., 1991. Searching Behaviour, the Behavioural Ecology of Finding Resources. Chapman and Hall, London. Google Scholar
  5. Benichou, O., Coppey, M., Moreau, M., Suet, P., Voituriez, R., 2005. Optimal search strategies for hidden targets. Phys. Rev. Lett. 94, 198101. CrossRefGoogle Scholar
  6. Benichou, O., Loverdo, C., Moreau, M., Voituriez, R., 2007. A minimal model of intermittent search in dimension two. J. Phys. A 19, 065141. Google Scholar
  7. Berg, O.G., Winter, R.B., von Hippel, P.H., 1981. Diffusion-driven mechanisms of protein translocation on nucleic acids. 1. Models and theory. Biochemistry 20, 6929–6948. CrossRefGoogle Scholar
  8. Bramham, C.R., Wells, D.G., 2007. Dendritic mRNA: transport, translation and function. Nat. Rev. Neurosci. 8, 776–789. CrossRefGoogle Scholar
  9. Bressloff, P., Newby, J., 2009. Directed intermittent search for hidden targets. New J. Phys. 11, 023033. CrossRefGoogle Scholar
  10. Brooks, E., 1999. Probabilistic methods for a linear reaction-hyperbolic system with constant coefficients. Ann. Appl. Probab. 9, 719–731. zbMATHCrossRefMathSciNetGoogle Scholar
  11. Brown, A., 2000. Slow axonal transport: stop and go traffic in the axon. Nat. Rev. Mol. Cell Biol. 1, 153–156. CrossRefGoogle Scholar
  12. De Vos, K.J., Grierson, A.J., Ackerley, S., Miller, C.C.J., 2008. Role of axonal transport in neurodegenerative diseases. Annu. Rev. Neurosci. 31, 151–173. CrossRefGoogle Scholar
  13. Dynes, J., Steward, O., 2007. Dynamics of bidirectional transport of ARC mRNA in neuronal dendrites. J. Comput. Neurol. 500, 433–447. CrossRefGoogle Scholar
  14. Friedman, A., Craciun, G., 2006. Approximate traveling waves in linear reaction-hyperbolic equations. SIAM J. Math. Anal. 38, 741–758. zbMATHCrossRefMathSciNetGoogle Scholar
  15. Friedman, A., Hu, B., 2007. Uniform convergence for approximate traveling waves in linear reaction-hyperbolic systems. Indiana Univ. Math. J. 56, 2133–2158. zbMATHCrossRefMathSciNetGoogle Scholar
  16. Gardiner, C.W., 2004. Handbook of Stochastic Methods for Physics, Chemistry, and the Natural Sciences, 3rd edn. Springer, Berlin. zbMATHGoogle Scholar
  17. Goldstein, A.Y.N., Wang, X., Schwarz, T.L., 2008. Axonal transport and the delivery of pre-synaptic components. Curr. Opin. Neurobiol. 18, 495–503. CrossRefGoogle Scholar
  18. Halford, S.E., Marko, J.F., 2004. How do site-specific DNA-binding proteins find their targets? Nucl. Acid Res. 32, 3040–3052. CrossRefGoogle Scholar
  19. Hirokawa, N., Takemura, R., 2005. Molecular motors and mechanisms of directional transport in neurons. Nat. Rev. Neurosci. 6, 201–214. CrossRefGoogle Scholar
  20. Howard, J., 2001. Mechanics of Motor Proteins and the Cytoskeleton. Sianuer, Sunderland. Google Scholar
  21. Kelleher, R.L., Govindarajan, A., Tonegawa, S., 2004. Translational regulatory mechanisms review in persistent forms of synaptic plasticity. Neuron 44, 59–73. CrossRefGoogle Scholar
  22. Kennedy, M.J., Ehlers, M.D., 2006. Organelles and trafficking machinery for postsynaptic plasticity. Annu. Rev. Neurosci. 29, 2325–2362. CrossRefGoogle Scholar
  23. Knowles, R., Sabry, J., Martone, M., Deerinck, T., Ellisman, M., Bassell, G., Kosik, K., 1996. Translocation of RNA granules in living neurons. J. Neurosci. 16, 7812–7820. Google Scholar
  24. Kural, C., Ki, H., Syed, S.D., Goshima, G., Gelfand, V.I., Selvin, P.R., 2005. Kinesin and Dynein move a peroxisome in vivo: a tug-of-war or coordinated movement. Science 308, 1469–1472. CrossRefGoogle Scholar
  25. Lamprecht, R., LeDoux, J., 2004. Structural plasticity and memory. Nat. Rev. Neurosci. 5, 45–54. CrossRefGoogle Scholar
  26. Liepelt, S., Lipowsky, R., 2007. Kinesin’s network of chemomechanical motor cycles. Phys. Rev. Lett. 98, 258102. CrossRefGoogle Scholar
  27. Loverdo, C., Benichou, O., Moreau, M., Voituriez, R., 2008. Enhanced reaction kinetics in biological cells. Natl. Phys. 4, 134–137. CrossRefGoogle Scholar
  28. Mattson, M.P., Gleichmann, M., Cheng, A., 2008. Mitochondria in neuroplasticity and neurological disorders. Neuron 60, 748–766. CrossRefGoogle Scholar
  29. Miller, K.E., Sheetz, M.P., 2004. Axonal mitochondrial transport and potential are correlated. J. Cell Sci. 117, 2791–2804. CrossRefGoogle Scholar
  30. Morris, R.L., Hollenbeck, P.J., 1993. The regulation of bidirectional mitochondrial transport is coordinated with axonal outgrowth. J. Cell Sci. 104, 917–927. Google Scholar
  31. Mueller, M.J.I., Klumpp, S., Lipowsky, R., 2008. Tug-of-war as a cooperative mechanism for bidirectional cargo transport by molecular motors. Proc. Natl. Acad. Sci. USA 105, 4609–4614. CrossRefGoogle Scholar
  32. Nakata, T., Terada, S., Hirokawa, N., 1998. Visualization of the dynamics of synaptic vesicle and plasma membrane proteins in living axons. J. Cell Biol. 160, 659–674. CrossRefGoogle Scholar
  33. Newby, J., Bressloff, P.C., 2009. Directed intermittent search for a hidden target on a dendritic tree. Phys. Rev. E 80, 021913. CrossRefGoogle Scholar
  34. Puthasnveettil, S.V., Monje, F.J., Miniaci, M.C., Choi, Y.-B., Karl, K.A., Khandros, E., Gawinowicz, M.A., Sheetz, M.P., Kandel, E.R., 2008. A new component in synaptic plasticity: upregulation of kinesin in the neurons of the gill-withdrwal reflex. Cell 135, 960–973. CrossRefGoogle Scholar
  35. Redner, S., 2001. A Guide to First Passage Time Processes. Cambridge University Press, Cambridge. CrossRefGoogle Scholar
  36. Reed, M.C., Venakides, S., Blum, J.J., 1990. Approximate traveling waves in linear reaction-hyperbolic equations. SIAM J. Appl. Math. 50, 167–180. zbMATHCrossRefMathSciNetGoogle Scholar
  37. Rook, M.S., Lu, M., Kosik, K.S., 2000. CaMKIIα 3′ untranslated regions-directed mRNA translocation in living neurons: Visualization by GFP linkage. J. Neurosci. 20, 6385–6393. Google Scholar
  38. Schnitzer, M.J., Visscher, K., Block, S.M., 2000. Force production by single kinesin motors. Nat. Cell. Biol. 2, 718. CrossRefGoogle Scholar
  39. Stokin, G.B., Goldstein, L.S.B., 2006. Axonal transport and Alzheimer’s disease. Annu. Rev. Biochem. 75, 607–627. CrossRefGoogle Scholar
  40. Sutton, M.A., Schuman, E.M., 2006. Dendritic protein synthesis, synaptic plasticity, and memory. Cell 127, 49–58. CrossRefGoogle Scholar
  41. Vale, R.D., 2003. The molecular motor toolbox for intracellular transport. Cell 112, 467–480. CrossRefGoogle Scholar
  42. Visscher, K., Block, S.M., 1999. Single kinesin molecules studied with a molecular force clamp. Nature 400, 184. CrossRefGoogle Scholar
  43. Viswanathan, G.M., Buldyrev, S.V., Havlin, S., da Luz, M.G.E., Raposo, E.P., Stanley, H.E., 1999. Optimizing the success of random searches. Nature 401, 911–914. CrossRefGoogle Scholar
  44. Waites, C., Craig, A., Garner, C., 2005. Mechanisms of vertebrate synaptogenesis. Annu. Rev. Neurosci. 28, 251–274. CrossRefGoogle Scholar
  45. Washbourne, P., Liu, X.-B., Jones, E.G., McAllister, A.K., 2004. Cycling of NMDA receptors during trafficking in neurons before synapse formation. J. Neurosci. 24, 8253–8264. CrossRefGoogle Scholar
  46. Welte, M.A., 2004. Bidirectional transport along microtubules. Curr. Biol. 14, 525. CrossRefGoogle Scholar

Copyright information

© Society for Mathematical Biology 2010

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of UtahSalt Lake CityUSA
  2. 2.Mathematical InstituteUniversity of OxfordOxfordUK

Personalised recommendations