Bulletin of Mathematical Biology

, Volume 72, Issue 6, pp 1562–1622 | Cite as

Differential Geometry Based Multiscale Models

  • Guo-Wei Wei
Open Access
Original Article


Large chemical and biological systems such as fuel cells, ion channels, molecular motors, and viruses are of great importance to the scientific community and public health. Typically, these complex systems in conjunction with their aquatic environment pose a fabulous challenge to theoretical description, simulation, and prediction. In this work, we propose a differential geometry based multiscale paradigm to model complex macromolecular systems, and to put macroscopic and microscopic descriptions on an equal footing. In our approach, the differential geometry theory of surfaces and geometric measure theory are employed as a natural means to couple the macroscopic continuum mechanical description of the aquatic environment with the microscopic discrete atomistic description of the macromolecule. Multiscale free energy functionals, or multiscale action functionals are constructed as a unified framework to derive the governing equations for the dynamics of different scales and different descriptions. Two types of aqueous macromolecular complexes, ones that are near equilibrium and others that are far from equilibrium, are considered in our formulations. We show that generalized Navier–Stokes equations for the fluid dynamics, generalized Poisson equations or generalized Poisson–Boltzmann equations for electrostatic interactions, and Newton’s equation for the molecular dynamics can be derived by the least action principle. These equations are coupled through the continuum-discrete interface whose dynamics is governed by potential driven geometric flows. Comparison is given to classical descriptions of the fluid and electrostatic interactions without geometric flow based micro-macro interfaces. The detailed balance of forces is emphasized in the present work. We further extend the proposed multiscale paradigm to micro-macro analysis of electrohydrodynamics, electrophoresis, fuel cells, and ion channels. We derive generalized Poisson–Nernst–Planck equations that are coupled to generalized Navier–Stokes equations for fluid dynamics, Newton’s equation for molecular dynamics, and potential and surface driving geometric flows for the micro-macro interface. For excessively large aqueous macromolecular complexes in chemistry and biology, we further develop differential geometry based multiscale fluid-electro-elastic models to replace the expensive molecular dynamics description with an alternative elasticity formulation.


Variational principle Multiscale Geometric flows Solvation analysis Electrostatic analysis Implicit solvent models Molecular dynamics Elasticity Navier–Stokes equation Poisson–Boltzmann equation Nernst–Planck equation 


  1. Abaid, N., Eisenberg, R.S., Liu, W., 2008. Asymptotic expansions of i-v relations via a Poisson–Nernst–Planck system. SIAM J. Appl. Dyn. Syst. 7, 1507–1526. zbMATHMathSciNetCrossRefGoogle Scholar
  2. Abraham, F.F., Broughton, J.Q., Bernstein, N., Kaxiras, E., 1998. Spanning the continuum to quantum length scales in a dynamic simulation of brittle fracture. Europhys. Lett. 44, 783–787. CrossRefGoogle Scholar
  3. Akiyama, R., Hirata, F., 1998. Theoretical study for water structure at highly ordered surface: effect of surface structure. J. Chem. Phys. 108, 4904–4911. CrossRefGoogle Scholar
  4. Alavi, S., Wei, G.W., Snider, R.F., 1997. Chain relations of reduced distribution functions and their associated correlation functions. J. Chem. Phys. 108, 706–714. CrossRefGoogle Scholar
  5. Ashbaugh, H.S., 2000. Convergence of molecular and macroscopic continuum descriptions of ion hydration. J. Phys. Chem. B 104(31), 7235–7238. CrossRefGoogle Scholar
  6. Auffray, C., Nottale, L., 2008. Scale relativity theory and integrative systems biology, 1: founding principles and scale laws. Prog. Biophys. Mol. Biol. 97, 79–114. CrossRefGoogle Scholar
  7. Baker, N.A., 2004. Poisson-Boltzmann methods for biomolecular electrostatics. Methods Enzymol. 383, 94–118. CrossRefGoogle Scholar
  8. Baker, N.A., 2005. Improving implicit solvent simulations: a Poisson-centric view. Curr. Opin. Struct. Biol. 15(2), 137–43. CrossRefGoogle Scholar
  9. Bates, P.W., Wei, G.W., Zhao, S., 2006. The minimal molecular surface. arXiv:q-bio/0610038v1.
  10. Bates, P.W., Wei, G.W., Zhao, S., 2008. Minimal molecular surfaces and their applications. J. Comput. Chem. 29(3), 380–91. CrossRefGoogle Scholar
  11. Bates, P.W., Chen, D., Sun, Y.H., Wei, G.W., Zhao, S., 2009. Geometric and potential driving formation and evolution of biomolecular surfaces. J. Math. Biol. 59, 193–231. zbMATHMathSciNetCrossRefGoogle Scholar
  12. Beglov, D., Roux, B., 1997. An integral equation to describe the solvation of polar molecules in liquid water. J. Phys. Chem. B 101(39), 7821–6. CrossRefGoogle Scholar
  13. Bertozzi, A.L., Greer, J.B., 2004. Low-curvature image simplifiers: global regularity of smooth solutions and Laplacian limiting schemes. Commun. Pure Appl. Math. 57(6), 764–790. zbMATHMathSciNetCrossRefGoogle Scholar
  14. Blomgren, P., Chan, T.F., 1998. Color TV: total variation methods for restoration of vector-valued images. IEEE Trans. Image Process. 7(3), 304–309. CrossRefGoogle Scholar
  15. Bobenko, A.I., Schröder, P., 2005. Discrete Willmore flow. In: Symp. on Geometry Processing, July 2005, p. 101–110. Google Scholar
  16. Boschitsch, A.H., Fenley, M.O., 2004. Hybrid boundary element and finite difference method for solving the nonlinear Poisson–Boltzmann equation. J. Comput. Chem. 25(7), 935–955. CrossRefGoogle Scholar
  17. Boschitsch, A.H., Fenley, M.O., 2007. A new outer boundary formulation and energy corrections for the nonlinear Poisson–Boltzmann equation. J. Comput. Chem. 28(5), 909–21. CrossRefGoogle Scholar
  18. Bostrom, M., Tavares, F.W., Bratko, D., Ninham, B.W., 2005. Specific ion effects in solutions of globular proteins: comparison between analytical models and simulation. J. Phys. Chem. B 109(51), 24489–94. CrossRefGoogle Scholar
  19. Budiono, Byun, D., Nyugen, V.D., Kim, J., Ko, H.S., 2008. Free surface transition and momentum augmentation of liquid flow in micro/nano-scale channels with hydrophobic and hydrophilic surfaces. J. Mech. Sci. Technol. 22, 2554–2562. Google Scholar
  20. Canham, P.B., 1970. The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell. J. Theor. Biol. 26, 61–81. CrossRefGoogle Scholar
  21. Carstensen, V., Kimmel, R., Sapiro, G., 1997. Geodesic active contours. Int. J. Comput. Vis. 22, 61–79. CrossRefGoogle Scholar
  22. Cecil, Thomas, 2005. A numerical method for computing minimal surfaces in arbitrary dimension. J. Comput. Phys. 206(2), 650–660. zbMATHMathSciNetCrossRefGoogle Scholar
  23. Cerutti, D.S., Baker, N.A., McCammon, J.A., 2007. Solvent reaction field potential inside an uncharged globular protein: a bridge between implicit and explicit solvent models? J. Chem. Phys. 127(15), 155101. CrossRefGoogle Scholar
  24. Chen, L., Conlisk, A.T., 2008. Electroosmotic flow and particle transport in micro/nano nozzles and diffusers. Biomed. Microdevices 10, 289–289. CrossRefGoogle Scholar
  25. Chen, D., Wei, G.W., 2009. Modeling and simulation of nano-electronic devices. J. Comput. Phys., 1–44. Google Scholar
  26. Chen, D.P., Eisenberg, R.S., Jerome, J.W., Shu, C.W., 1995. Hydrodynamic model of temperature change in open ionic channels. Biophys. J. 69, 2304–2322. CrossRefGoogle Scholar
  27. Chen, Z., Baker, N.A., Wei, G.W., 2010. Differential geometry based solvation models, I: Eulerian formulation. J. Comput. Phys., to be submitted. Google Scholar
  28. Cheng, L.T., Dzubiella, J., McCammon, A.J., Li, B., 2007. Application of the level-set method to the implicit solvation of nonpolar molecules. J. Chem. Phys. 127(8). Google Scholar
  29. Cheng, X.L., Ivanov, I., Wang, H.L., Sine, S.M., McCammon, J.A., 2009. Molecular dynamics simulations of a prokaryotic homologue of the nicotinic acetylcholine receptor. Biophys. J. 96, 4502–4513. CrossRefGoogle Scholar
  30. Chopp, D.L., 1993. Computing minimal surfaces via level set curvature flow. J. Comput. Phys. 106(1), 77–91. zbMATHMathSciNetCrossRefGoogle Scholar
  31. Chorny, I., Dill, K.A., Jacobson, M.P., 2005. Surfaces affect ion pairing. J. Phys. Chem. B 109(50), 24056–60. CrossRefGoogle Scholar
  32. Chu, K.T., Bazant, M.Z., 2006. Nonlinear electrochemical relaxation around conductors. Phys. Rev. E 74, 011501. CrossRefGoogle Scholar
  33. Coifman, R.R., Lafon, S., Lee, A.B., Maggioni, M., Warner, F., Zucker, S., 2005. Geometric diffusions as a tool for harmonic analysis and structure definition of data: diffusion maps. In: Proceedings of the National Academy of Sciences, pp. 7426–7431. Google Scholar
  34. Collier, J.R., Monk, N.A.M., Maini, P.K., Lewis, J.H., 1996. Pattern formation by lateral inhibition with feedback: a mathematical model of delta-notch intercellular signalling. J. Theor. Biol. 183, 429–446. CrossRefGoogle Scholar
  35. Connolly, M.L., 1983. Analytical molecular surface calculation. J. Appl. Crystallogr. 16(5), 548–558. CrossRefGoogle Scholar
  36. Davis, M.E., McCammon, J.A., 1990. Electrostatics in biomolecular structure and dynamics. Chem. Rev. 94, 509–21. CrossRefGoogle Scholar
  37. Desbrun, M., Meyer, M., Schröder, P., Barr, A.H., 1999. Implicit fairing of irregular meshes using diffusion and curvature flow. In: ACM SIGGRAPH, pp. 317–324. Google Scholar
  38. Dinh, H.Q., Yezzi, A., Turk, G., 2005. Texture transfer during shape transformation. ACM Trans. Graph. 24(2), 289–310. CrossRefGoogle Scholar
  39. Dong, F., Olsen, B., Baker, N.A., 2008. Computational methods for biomolecular electrostatics. Methods Cell Biol. 84, 843–70. CrossRefGoogle Scholar
  40. Du, Q., Liu, C., Wang, X.Q., 2004. A phase field approach in the numerical study of the elastic bending energy for vesicle membranes. J. Comput. Phys. 198, 450–468. zbMATHMathSciNetCrossRefGoogle Scholar
  41. Dzubiella, J., Swanson, J.M.J., McCammon, J.A., 2006a. Coupling hydrophobicity, dispersion, and electrostatics in continuum solvent models. Phys. Rev. Lett. 96, 087802. CrossRefGoogle Scholar
  42. Dzubiella, J., Swanson, J.M.J., McCammon, J.A., 2006b. Coupling nonpolar and polar solvation free energies in implicit solvent models. J. Chem. Phys. 124, 084905. CrossRefGoogle Scholar
  43. Engquist, W.N.E.B., Li, X., Ren, W., Vanden-Eijnden, E., 2007. Heterogeneous multiscale methods: a review. Commun. Comput. Phys. 2, 367–450. zbMATHMathSciNetGoogle Scholar
  44. Elcock, A.H., Gabdoulline, R.R., Wade, R.C., McCammon, J.A., 1999. Computer simulation of protein-protein association kinetics: acetylcholinesterase-fasciculin. J. Mol. Biol. 291(1), 149–162. CrossRefGoogle Scholar
  45. Evans, L.C., Spruck, J., 1991. Motion of level sets by mean curvature. J. Differ. Geom. 33, 635–681. zbMATHMathSciNetGoogle Scholar
  46. Federer, H., 1959. Curvature measures. Trans. Am. Math. Soc. 93, 418–491. zbMATHMathSciNetGoogle Scholar
  47. Feig, M., Brooks III, C.L., 2004. Recent advances in the development and application of implicit solvent models in biomolecule simulations. Curr. Opin. Struct. Biol. 14, 217–224. CrossRefGoogle Scholar
  48. Fixman, M., 1979. The Poisson–Boltzmann equation and its application to polyelectrolytes. J. Chem. Phys. 70(11), 4995–5005. CrossRefGoogle Scholar
  49. Fleury, V., 2009. Clarifying tetrapod embryogenesis a physicist’s point of view. Eur. Phys. J. Appl. Phys. 45, 30101. CrossRefGoogle Scholar
  50. Fogolari, F., Brigo, A., Molinari, H., 2002. The Poisson–Boltzmann equation for biomolecular electrostatics: a tool for structural biology. J. Mol. Recognit. 15(6), 377–92. CrossRefGoogle Scholar
  51. Forsman, J., 2004. A simple correlation-corrected Poisson–Boltzmann theory. J. Phys. Chem. B 108(26), 9236–45. CrossRefGoogle Scholar
  52. Franco, A.A., Schott, P., Jallut, C., Maschke, B., 2006. A dynamic mechanistic model of an electrochemical interface. J. Electrochem. Soc. 153, A1053–A1061. CrossRefGoogle Scholar
  53. Fries, P.H., Patey, G.N., 1985. The solution of the hypernetted-chain approximation for fluids of nonspherical particles. a general method with application to dipolar hard spheres. J. Chem. Phys. 82, 429–440. CrossRefGoogle Scholar
  54. Gabdoulline, R.R., Wade, R.C., 1998. Brownian dynamics simulation of protein–protein diffusional encounter. Methods Enzymol. 14(3), 329–341. CrossRefGoogle Scholar
  55. Gallicchio, E., Levy, R.M., 2004. AGBNP: an analytic implicit solvent model suitable for molecular dynamics simulations and high-resolution modeling. J. Comput. Chem. 25(4), 479–499. CrossRefGoogle Scholar
  56. Geng, W., Yu, S., Wei, G.W., 2007. Treatment of charge singularities in implicit solvent models. J. Phys. Chem. 127, 114106. CrossRefGoogle Scholar
  57. Geng, W.H., Wei, G.W., 2008. Interface technique based implicit solvent molecular dynamics. J. Comput. Phys., submitted. Google Scholar
  58. Geng, W.H., Wei, G.W., 2009. Matched interface and boundary implementation of Poisson–Boltzmann based molecular dynamics. J. Comput. Phys., solicited submission. Google Scholar
  59. Gilboa, G., Sochen, N., Zeevi, Y.Y., 2004. Image sharpening by flows based on triple well potentials. J. Math. Imaging Vis. 20, 121–131. MathSciNetCrossRefGoogle Scholar
  60. Gilson, M.K., Davis, M.E., Luty, B.A., McCammon, J.A., 1993. Computation of electrostatic forces on solvated molecules using the Poisson–Boltzmann equation. J. Phys. Chem. 97(14), 3591–3600. CrossRefGoogle Scholar
  61. Gomes, J., Faugeras, O.D., 2001. Using the vector distance functions to evolve manifolds of arbitrary codimension. Lect. Notes Comput. Sci. 2106, 1–13. CrossRefGoogle Scholar
  62. Gordon, D., Krishnamurthy, V., Chung, S.H., 2009. Generalized Langevin models of molecular dynamics simulations with applications to ion channels. J. Chem. Phys. 131, 134102. CrossRefGoogle Scholar
  63. Greer, J.B., Bertozzi, A.L., 2004a. H-1 solutions of a class of fourth order nonlinear equations for image processing. Discrete Contin. Dyn. Syst. 10, 349–366. zbMATHMathSciNetGoogle Scholar
  64. Greer, J.B., Bertozzi, A.L., 2004b. Traveling wave solutions of fourth order pdes for image processing. SIAM J. Math. Anal. 36, 38–68. zbMATHMathSciNetCrossRefGoogle Scholar
  65. Grigoryev, S.A., Arya, G., Correll, S., Woodcock, C.L., Schlick, T., 2009. Evidence for heteromorphic chromatin fibers from analysis of nucleosome interactions. Proc. Natl. Acad. Sci. USA 106, 13317–13322. CrossRefGoogle Scholar
  66. Grinspun, E., Hirani, A.N., Desbrun, M., Schröder, P., 2003. Discrete shells. In: ACM SIGGRAPH Symp. on Computer Animation, pp. 62–67. Google Scholar
  67. Grochowski, P., Trylska, J., 2007. Continuum molecular electrostatics, salt effects and counterion binding. A review of the Poisson–Boltzmann theory and its modifications. Biopolymers 89(2), 93–113. CrossRefGoogle Scholar
  68. Gurau, V., Mann, J.A., 2009. A critical overview of computational fluid dynamics multiphase models for proton exchange membrane fuel cells. SIAM J. Appl. Math. 70, 410–454. zbMATHMathSciNetCrossRefGoogle Scholar
  69. Helfrich, W., 1973. Elastic properties of lipid bilayers: theory and possible experiments. Z. Naturforsch. C 28, 693–703. Google Scholar
  70. Holst, M.J., 1993. Multilevel Methods for the Poisson–Boltzmann Equation. University of Illinois at Urbana-Champaign, Numerical Computing Group, Urbana-Champaign. Google Scholar
  71. Huang, D.M., Geissler, P.L., Chandler, D., 2001. Scaling of hydrophobic solvation free energies. J. Phys. Chem. B 105(28), 6704–6709. CrossRefGoogle Scholar
  72. Hwang, H., Schatz, G.C., Ratner, M.A., 2006. Ion current calculations based on three dimensional Poisson–Nernst–Planck theory for a cyclic peptide nanotube. J. Phys. Chem. B 110, 6999–7008. CrossRefGoogle Scholar
  73. Im, W., Beglov, D., Roux, B., 1998. Continuum solvation model: electrostatic forces from numerical solutions to the Poisson–Boltzmann equation. Comput. Phys. Commun. 111(1-3), 59–75. zbMATHCrossRefGoogle Scholar
  74. Iwamoto, M., Liu, F., Ou-Yang, Z.C., 2006. Shape and stability of two-dimensional lipid domains with dipole-dipole interactions. J. Chem. Phys. 125, 224701. CrossRefGoogle Scholar
  75. Knap, J., Ortiz, M., 2001. Spanning the continuum to quantum length scales in a dynamic simulation of brittle fracture. J. Mech. Phys. Solids 49, 1899–1923. zbMATHCrossRefGoogle Scholar
  76. Kobbelt, L., 2000. Discrete fairing and variational subdivision for freeform surface design. Vis. Comput. 16(3–4), 142–158. CrossRefGoogle Scholar
  77. Lapidus, L.J., Yao, S., McGarrity, K., Hertzog, D., Tubman, E., Bakajin, O., 2007. Protein hydrophobic collapse and early folding steps observed in a microfluidic mixer. Biophys. J. 93, 218–224. CrossRefGoogle Scholar
  78. le Noble, F., Fleury, V., Pries, A., Corvol, P., Eichmann, A., Reneman, R.S., 2005. Control of arterial branching morphogenesis in embryogenesis: go with the flow. Eur. Phys. J., Appl. Phys. 65, 619–628. Google Scholar
  79. Levy, R.M., Zhang, L.Y., Gallicchio, E., Felts, A.K., 2003. On the nonpolar hydration free energy of proteins: surface area and continuum solvent models for the solute-solvent interaction energy. J. Am. Chem. Soc. 125(31), 9523–9530. CrossRefGoogle Scholar
  80. Li, Y., Santosa, F., 1996. A computational algorithm for minimizing total variation in image restoration. IEEE Trans. Image Process. 5(6), 987–95. CrossRefGoogle Scholar
  81. Liu, J.G., Shu, C.W., 2000. A high-order discontinuous Galerkin method for 2d incompressible flows. J. Comput. Phys. 160, 577–596. zbMATHMathSciNetCrossRefGoogle Scholar
  82. Lu, Q., Luo, R., 2003. A Poisson–Boltzmann dynamics method with nonperiodic boundary condition. J. Chem. Phys. 119(21), 11035–11047. CrossRefGoogle Scholar
  83. Lu, B.Z., Chen, W.Z., Wang, C.X., Xu, X.J., 2002. Protein molecular dynamics with electrostatic force entirely determined by a single Poisson–Boltzmann calculation. Proteins 48(3), 497–504. CrossRefGoogle Scholar
  84. Luo, R., David, L., Gilson, M.K., 2002. Accelerated Poisson–Boltzmann calculations for static and dynamic systems. J. Comput. Chem. 23(13), 1244–53. CrossRefGoogle Scholar
  85. Lysaker, M., Lundervold, A., Tai, X.C., 2003. Noise removal using fourth-order partial differential equation with application to medical magnetic resonance images in space and time. IEEE Trans. Image Process. 12, 1579–1590. CrossRefGoogle Scholar
  86. Madura, J.D., Briggs, J.M., Wade, R.C., Davis, M.E., Luty, B.A., Ilin, A., Antosiewicz, J., Gilson, M.K., Bagheri, B., Scott, L.R., McCammon, J.A., 1995. Electrostatics and diffusion of molecules in solution—simulations with the University of Houston Brownian Dynamics program. Comput. Phys. Commun. 91(1–3), 57–95. CrossRefGoogle Scholar
  87. Mikula, K., Sevcovic, D., 2004. A direct method for solving an anisotropic mean curvature flow of plane curves with an external force. Math. Methods Appl. Sci. 27(13), 1545–1565. zbMATHMathSciNetCrossRefGoogle Scholar
  88. Mumford, D., Shah, J., 1989. Optimal approximations by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math. 42(5), 577–685. zbMATHMathSciNetCrossRefGoogle Scholar
  89. Nottale, L., Auffray, C., 2008. Scale relativity theory and integrative systems biology, 2: macroscopic quantum-type mechanics. Prog. Biophys. Mol. Biol. 97, 115–157. CrossRefGoogle Scholar
  90. Osher, S., Rudin, L.I., 1990. Feature-oriented image enhancement using shock filters. SIAM J. Numer. Anal. 27(4), 919–940. zbMATHCrossRefGoogle Scholar
  91. Osher, S., Sethian, J.A., 1988. Fronts propagating with curvature-dependent speed: algorithms based on Hamilton–Jacobi formulations. J. Comput. Phys. 79(1), 12–49. zbMATHMathSciNetCrossRefGoogle Scholar
  92. Oster, G.F., Murray, J.D., Maini, P.K., 1985. A model for chondrogenic condensations in the developing limb: the role of extracellular matrix and cell tractions. J. Embryol. Exp. Morphol. 89, 93–112. Google Scholar
  93. Ou-Yang, Z.C., Helfrich, W., 1989. Bending energy of vesicle membranes: general expressions for the first, second, and third variation of the shape energy and applications to spheres and cylinders. Phys. Rev. A 39, 5280–5288. CrossRefGoogle Scholar
  94. Parr, R., Yang, W., 1989. Density Functional Theory of Atoms and Molecules. Google Scholar
  95. Peskin, C.S., 1977. Numerical analysis of blood flow in the heart. J. Comput. Phys. 25(3), 220–52. zbMATHMathSciNetCrossRefGoogle Scholar
  96. Pinkall, U., Polthier, K., 1993. Computing discrete minimal surfaces and their conjugates. Exp. Math. 2(1), 15–36. zbMATHMathSciNetGoogle Scholar
  97. Prabhu, N.V., Zhu, P., Sharp, K.A., 2004. Implementation and testing of stable, fast implicit solvation in molecular dynamics using the smooth-permittivity finite difference Poisson–Boltzmann method. J. Comput. Chem. 25(16), 2049–2064. CrossRefGoogle Scholar
  98. Prabhu, N.V., Panda, M., Yang, Q.Y., Sharp, K.A., 2008. Explicit ion, implicit water solvation for molecular dynamics of nucleic acids and highly charged molecules. J. Comput. Chem. 29, 1113–1130. CrossRefGoogle Scholar
  99. Promislow, K., Wetton, B., 2009. Pem fuel cells: a mathematical overview. SIAM J. Appl. Math. 70, 369–409. zbMATHMathSciNetCrossRefGoogle Scholar
  100. Richards, F.M., 1977. Areas, volumes, packing, and protein structure. Annu. Rev. Biophys. Bioeng. 6(1), 151–176. CrossRefGoogle Scholar
  101. Roux, B., Simonson, T., 1999. Implicit solvent models. Biophys. Chem. 78(1–2), 1–20. CrossRefGoogle Scholar
  102. Rudin, L.I., Osher, S., Fatemi, E., 1992. Nonlinear total variation based noise removal algorithms. In: Proceedings of the Eleventh Annual International Conference of the Center for Nonlinear Studies on Experimental Mathematics: Computational Issues in Nonlinear Science, pp. 259–268. Elsevier, North-Holland, Amsterdam. Google Scholar
  103. Sanner, M.F., Olson, A.J., Spehner, J.C., 1996. Reduced surface: an efficient way to compute molecular surfaces. Biopolymers 38, 305–320. CrossRefGoogle Scholar
  104. Sapiro, G., Ringach, D.L., 1996. Anisotropic diffusion of multivalued images with applications to color filtering. IEEE Trans. Image Process. 5(11), 1582–1586. CrossRefGoogle Scholar
  105. Sarti, A., Malladi, R., Sethian, J.A., 2002. Subjective surfaces: a geometric model for boundary completion. Int. J. Comput. Vis. 46(3), 201–221. zbMATHCrossRefGoogle Scholar
  106. Sbert, C., Solé, A.F., 2003. 3d curves reconstruction based on deformable models. J. Math. Imaging Vis. 18(3), 211–223. zbMATHCrossRefGoogle Scholar
  107. Sciubba, E., 2004. Flow exergy as a Lagrangian for the Navier–Stokes equations for incompressible flow. Int. J. Thermodyn. 7, 115–122. Google Scholar
  108. Sethian, J.A., 2001. Evolution, implementation, and application of level set and fast marching methods for advancing fronts. J. Comput. Phys. 169(2), 503–555. zbMATHMathSciNetCrossRefGoogle Scholar
  109. Sharp, K.A., Honig, B., 1990. Electrostatic interactions in macromolecules—theory and applications. Annu. Rev. Biophys. Biophys. Chem. 19, 301–332. CrossRefGoogle Scholar
  110. Simonson, T., 2001. Macromolecular electrostatics: continuum models and their growing pains. Curr. Opin. Struct. Biol. 11(2), 243–252. CrossRefGoogle Scholar
  111. Simonson, T., 2003. Electrostatics and dynamics of proteins. Rep. Prog. Phys. 66(5), 737–87. CrossRefGoogle Scholar
  112. Sitkoff, D., Ben-Tal, N., Honig, B., 1996. Calculation of alkane to water solvation free energies using continuum solvent models. J. Phys. Chem. 100, 2744–2752. CrossRefGoogle Scholar
  113. Smereka, P., 2003. Semi-implicit level set methods for curvature and surface diffusion motion. J. Sci. Comput. 19(1), 439–456. zbMATHMathSciNetCrossRefGoogle Scholar
  114. Snider, R.F., 1960. Quantum-mechanical modified Boltzmann equation for degenerate internal states. J. Chem. Phys. 32, 1051–1060. MathSciNetCrossRefGoogle Scholar
  115. Snider, R.F., Wei, G.W., Muga, J.G., 1996a. Moderately dense gas quantum kinetic theory: aspects of pair correlations. J. Chem. Phys. 105, 3057–3065. CrossRefGoogle Scholar
  116. Snider, R.F., Wei, G.W., Muga, J.G., 1996b. Moderately dense gas quantum kinetic theory: transport coefficient expressions. J. Chem. Phys. 105, 3066–3078. CrossRefGoogle Scholar
  117. Sochen, N., Kimmel, R., Malladi, R., 1998. A general framework for low level vision. IEEE Trans. Image Process. 7(3), 310–318. zbMATHMathSciNetCrossRefGoogle Scholar
  118. Sun, Y.H., Wu, P.R., Wei, G.W., Wang, G., 2006a. Evolution operator based single-step method for image processing. Int. J. Biomed. Imaging 83847, 1–27. CrossRefGoogle Scholar
  119. Sun, Y.H., Zhou, Y.C., Li, S.G., Wei, G.W., 2006b. A windowed Fourier spectral scheme for hyperbolic conservation laws. J. Comput. Phys. 214, 466–490. zbMATHMathSciNetCrossRefGoogle Scholar
  120. Swanson, J.M.J., Wagoner, J.A., Baker, N.A., McCammon, J.A., 2007. Optimizing the Poisson dielectric boundary with explicit solvent forces and energies: lessons learned with atom-centered dielectric functions. J. Chem. Theory Comput. 3(1), 170–83. CrossRefGoogle Scholar
  121. Tadmor, E.B., Ortiz, M., Phillips, R., 1996. Quasicontinuum analysis of defects in crystals. Philos. Mag. A 76, 1529–1564. CrossRefGoogle Scholar
  122. Tan, C., Yang, L., Luo, R., 2006. How well does Poisson–Boltzmann implicit solvent agree with explicit solvent? A quantitative analysis. J. Phys. Chem. B 110(37), 18680–18687. CrossRefGoogle Scholar
  123. Tang, S., Hou, T.Y., Liu, W.K., 2006. A pseudo-spectral multiscale method: interfacial conditions and coarse grid equations. J. Comput. Phys. 213, 57–85. zbMATHMathSciNetCrossRefGoogle Scholar
  124. Taubin, G., 1995. A signal processing approach to fair surface design. In: Proc. of SIGGRAPH, August 1995, pp. 351–358. Google Scholar
  125. Tomasi, J., Mennucci, B., Cammi, R., 2005. Quantum mechanical continuum solvation models. Chem. Rev. 105, 2999–3093. CrossRefGoogle Scholar
  126. Tully-Smith, D.M., Reiss, H., 1970. Further development of scaled particle theory of rigid sphere fluids. J. Chem. Phys. 53(10), 4015–25. CrossRefGoogle Scholar
  127. Valentini, P., Schwartzentruber, T.E., 2009. Large-scale molecular dynamics simulations of normal shock waves in dilute argon. Phys. Fluids 21, 066101. CrossRefGoogle Scholar
  128. Vlassiouk, I., Smirnov, S., Siwy, Z., 2008. Ionic selectivity of single nanochannels. Nano Lett. 8, 1978–1985. CrossRefGoogle Scholar
  129. Wagoner, J.A., Baker, N.A., 2006. Assessing implicit models for nonpolar mean solvation forces: the importance of dispersion and volume terms. Proc. Natl. Acad. Sci. USA 103(22), 8331–6. CrossRefGoogle Scholar
  130. Waldmann, L., 1957. Die Boltzmann-Gleichung für Gase mit rotierenden Molekulen. Z. Naturforsch. A 12, 660–662. zbMATHGoogle Scholar
  131. Wan, D.C., Patnaik, B.S.V., Wei, G.W., 2002. Discrete singularconvolution-finite subdomain method for the solution of incompressible viscous flows. J. Comput. Phys. 180, 229–255. zbMATHCrossRefGoogle Scholar
  132. Wang, W., Shu, C.W., 2009. The wkb local discontinuous Galerkin method for the simulation of Schrodinger equation in a resonant tunneling diode. J. Sci. Comput. 40, 360–374. MathSciNetCrossRefGoogle Scholar
  133. Warshel, A., Papazyan, A., 1998. Electrostatic effects in macromolecules: fundamental concepts and practical modeling. Curr. Opin. Struct. Biol. 8(2), 211–7. CrossRefGoogle Scholar
  134. Warshel, A., Sharma, P.K., Kato, M., Parson, W.W., 2006. Modeling electrostatic effects in proteins. Biochim. Biophys. Acta, Proteins Proteomics 1764(11), 1647–76. CrossRefGoogle Scholar
  135. Weeks, J.D., Chandler, D., Andersen, H.C., 1971. Role of repulsive forces in determining the equilibrium structure of simple liquids. J. Chem. Phys. 54(12), 5237–47. CrossRefGoogle Scholar
  136. Wei, G.W., 1999. Generalized Perona–Malik equation for image restoration. IEEE Signal Process. Lett. 6(7), 165–7. CrossRefGoogle Scholar
  137. Wei, G.W., 2001a. A new algorithm for solving some mechanical problems. Comput. Methods Appl. Mech. Eng. 190, 2017–2030. zbMATHCrossRefGoogle Scholar
  138. Wei, G.W., 2001b. Vibration analysis by discrete singular convolution. J. Sound Vib. 244, 535–553. CrossRefGoogle Scholar
  139. Wei, G.W., 2002. Oscillation reduction by anisotropic diffusions. Comput. Phys. Commun. 144, 417–342. Google Scholar
  140. Wei, G.W., Jia, Y.Q., 2002. Synchronization-based image edge detection. Europhys. Lett. 59(6), 814. CrossRefGoogle Scholar
  141. Wei, G.W., Zhao, Y.B., Xiang, Y., 2002. Discrete singular convolution and its application to the analysis of plates with internal supports, I: theory and algorithm. Int. J. Numer. Methods Eng. 55, 913–946. zbMATHMathSciNetCrossRefGoogle Scholar
  142. Wei, G.W., Sun, Y.H., Zhou, Y.C., Feig, M., 2005. Molecular multiresolution surfaces. arXiv:math-ph/0511001v1, pp. 1–11.
  143. Willmore, T.J., 1997. Riemannian Geometry. Oxford University Press, Oxford. Google Scholar
  144. Wolfgang, K., 2002. Differential Geometry: Curves-Surface-Manifolds. American Mathematical Society, Providence. Google Scholar
  145. Xu, G., Pan, Q., Bajaj, C.L., 2006. Discrete surface modeling using partial differential equations. Comput. Aided Geom. Des. 23(2), 125–145. zbMATHMathSciNetCrossRefGoogle Scholar
  146. Yang, W.T., Lee, T.S., 1995. A density matrix divide and conquer approach for electronic structure calculations of large molecules. J. Chem. Phys. 103, 5674–5678. CrossRefGoogle Scholar
  147. Yu, S., Wei, G.W., 2007. Three-dimensional matched interface and boundary (MIB) method for treating geometric singularities. J. Comput. Phys. 227, 602–632. zbMATHMathSciNetCrossRefGoogle Scholar
  148. Yu, S., Geng, W., Wei, G.W., 2007a. Treatment of geometric singularities in implicit solvent models. J. Chem. Phys. 126, 244108. CrossRefGoogle Scholar
  149. Yu, S., Zhou, Y., Wei, G.W., 2007b. Matched interface and boundary (MIB) method for elliptic problems with sharp-edged interfaces. J. Comput. Phys. 224(2), 729–756. zbMATHMathSciNetCrossRefGoogle Scholar
  150. Zhang, Y., Xu, G., Bajaj, C., 2006. Quality meshing of implicit solvation models of biomolecular structures. Comput. Aided Geom. Des. 23(6), 510–30. zbMATHMathSciNetCrossRefGoogle Scholar
  151. Zhao, S., Wei, G.W., 2004. High-order FDTD methods via derivative matching for maxwell’s equations with material interfaces. J. Comput. Phys. 200(1), 60–103. zbMATHMathSciNetCrossRefGoogle Scholar
  152. Zheng, Z., Hansford, D.J., Conlisk, A.T., 2003. Effect of multivalent ions on electroosmotic flow in micro- and nanochannels. Electrophoresis 24, 3006–3017. CrossRefGoogle Scholar
  153. Zhou, Y.C., Wei, G.W., 2003. High-resolution conjugate filters for the simulation of flows. J. Comput. Phys. 189, 150–179. MathSciNetCrossRefGoogle Scholar
  154. Zhou, Y.C., Wei, G.W., 2006. On the fictitious-domain and interpolation formulations of the matched interface and boundary (MIB) method. J. Comput. Phys. 219(1), 228–246. zbMATHMathSciNetCrossRefGoogle Scholar
  155. Zhou, Y.C., Zhao, S., Feig, M., Wei, G.W., 2006. High order matched interface and boundary method for elliptic equations with discontinuous coefficients and singular sources. J. Comput. Phys. 213(1), 1–30. zbMATHMathSciNetCrossRefGoogle Scholar
  156. Zhou, Y.C., Feig, M., Wei, G.W., 2008a. Highly accurate biomolecular electrostatics in continuum dielectric environments. J. Comput. Chem. 29, 87–97. CrossRefGoogle Scholar
  157. Zhou, Y.C., Holst, M.J., McCammon, J.A., 2008b. A nonlinear elasticity model of macromolecular conformational change induced by electrostatic forces. J. Math. Anal. Appl. 340, 135–164. zbMATHMathSciNetCrossRefGoogle Scholar
  158. Zhou, Y.C., Lu, B.Z., Huber, G.A., Holst, M.J., McCammon, J.A., 2008c. Continuum simulations of acetylcholine consumption by acetylcholinesterase: a Poisson–Nernst–Planck approach. J. Phys. Chem. B 112, 270–275. CrossRefGoogle Scholar

Copyright information

© The Author(s) 2010

Authors and Affiliations

  1. 1.Department of MathematicsMichigan State UniversityEast LansingUSA
  2. 2.Department of Electrical and Computer EngineeringMichigan State UniversityEast LansingUSA

Personalised recommendations