Advertisement

Bulletin of Mathematical Biology

, Volume 72, Issue 6, pp 1534–1561 | Cite as

An ODE Model of Early Stages of Atherosclerosis: Mechanisms of the Inflammatory Response

  • Anna Ougrinovskaia
  • Rosemary S. Thompson
  • Mary R. Myerscough
Original Article

Abstract

Atherosclerosis is a chronic disease of the large arteries, characterized by fatty cholesterol-filled streaks and plaque build-up within the artery wall. Within the past decade, inflammation has been determined as a crucial factor in all stages of lesion formation, however, many of the mechanisms involved are not yet fully understood. We present a simplified ODE model that explores the role of inflammation in atherosclerosis. The model incorporates two of the main lesion constituents, cholesterol-carrying modified Low Density Lipoproteins (LDLs) and macrophage foam cells. Their complex interactions are combined into general functions, and the long-term model behaviour is investigated through phase plane analysis and simulations. Our results indicate that the underlying mechanisms of macrophage uptake of modified LDL can have a deep impact on the cellular dynamics in the lesion. Our model demonstrates that it is macrophage proliferation and constant signalling to the endothelial cells, rather than an increasing influx of modified LDL, that drives lesion instability.

Keywords

Atherosclerosis Inflammatory response Macrophages ODE model Dynamical system 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cobbold, C.A., Sherratt, J.A., Maxwell, S.R.J., 2002. Lipoprotein oxidation and its significance for atherosclerosis: a mathematical approach. Bull. Math. Biol. 64, 65–95. CrossRefGoogle Scholar
  2. Girn, H.R.S., Orsi, N.M., Homer-Vanniasinkam, S., 2007. An overview of cytokine interactions in atherosclerosis and implications for peripheral arterial disease. Vasc. Med. 12(4), 299–309. CrossRefGoogle Scholar
  3. Hansson, G.K., 2005. Mechanisms of disease: Inflammation, atherosclerosis, and coronary artery disease. N. Engl. J. Med. 352, 1685–1695. CrossRefGoogle Scholar
  4. Hansson, G.K., Libby, P., 2006. The immune response in atherosclerosis: a double-edged sword. Nature Immunology 6, 508–519. CrossRefGoogle Scholar
  5. Ibragimov, A.I., McNeal, C.J., Ritter, L.R., Walton, J.R., 2005. A mathematical model of atherogenesis as an inflammatory response. Math. Med. Biol. 22, 305–333. zbMATHCrossRefGoogle Scholar
  6. Kharbanda, R., MacAllister, R., 2005. The atherosclerosis time-line and the role of the endothelium. Curr. Med. Chem. 5, 47–52. Google Scholar
  7. Kreisberg, R.A., Oberman, A., 2002. Lipids and atherosclerosis: Lessons learned from randomized controlled trials of lipid lowering and other relevant studies. J. Clin. Endocrinol. Metab. 87(2), 423–437. CrossRefGoogle Scholar
  8. Kunjathoor, V.V., Febbraio, M., Podrez, E.A., Moore, K.J., Andersson, L., Koehn, S., Rhee, J.S., Silverstein, R., Hoff, H.F., Freeman, M.W., 2002. Scavenger receptors class A-I/II and CD36 are the principal receptors responsible for the uptake of modified low density lipoprotein leading to lipid loading in macrophages. J. Biol. Chem. 277(51), 49982–49988. CrossRefGoogle Scholar
  9. Lendon, C.L., Davies, M.J., Born, G.V.R., Richardson, P.D., 1991. Atherosclerotic plaque caps are locally weakened when macrophages density is increased. Atherosclerosis 87(1), 87–90. CrossRefGoogle Scholar
  10. Libby, P., 2002. Inflammation in atherosclerosis. Nature 420, 868–874. CrossRefGoogle Scholar
  11. Libby, P., Aikawa, M., 2002. Stabilization of atherosclerotic plaques: New mechanisms and clinical targets. Nat. Med. 8(11), 1257–1262. CrossRefGoogle Scholar
  12. Libby, P., Ridker, P.M., 2006. Inflammation and atherothrombosis: from population biology and bench research to clinical practice. J. Am. Coll. Cardiol. 48, A33–46. CrossRefGoogle Scholar
  13. Libby, P., Ridker, P.M., Maseri, A., 2002. Inflammation and atherosclerosis. Circulation 105, 1135–1143. CrossRefGoogle Scholar
  14. Liu, H., Shi, B., Huang, C.-C., Eksarko, P., Pope, R.M., 2008. Transcriptional diversity during monocyte to macrophage differentiation. Immunol. Lett. 117(1), 70–80. CrossRefGoogle Scholar
  15. Llodrá, J., Angeli, V., Liu, J., Trogan, E., Fisher, E.A., Randolph, G.J., 2004. Emigration of monocyte-derived cells from atherosclerotic lesions characterizes regressive, but not progressive plaques. Proc. Natl. Acad. Sci. USA 101(32), 11779–11784. CrossRefGoogle Scholar
  16. Lusis, A.J., 2000. Atherosclerosis. Nature 407. Google Scholar
  17. Nicholson, A.C., Han, J., Febbraio, M., Silverstein, R.L., Hajjar, D.P., 2001. Role of CD36, the macrophage class B scavenger receptor, in atherosclerosis. Ann. N.Y. Acad. Sci. 947(1), 224–228. CrossRefGoogle Scholar
  18. Perko, L., 1991. Differential Equations and Dynamical Systems, 1st edn. Texts in Applied Mathematics, vol. 7, Springer, Berlin. zbMATHGoogle Scholar
  19. Plank, M.J., Comerford, A., Wall, D.J.N., David, T., 2007. Modelling the early stages of atherosclerosis. In: Deutsch, A., Brusch, L., Byrne, H., de Vries, G., Herzel, H. (Eds.), Mathematical Modelling of Biological Systems, vol. 1, pp. 263–274. Birkhauser, Boston. Chap. 23. CrossRefGoogle Scholar
  20. Prosi, M., Zunino, P., Perktold, K., Quarteroni, A., 2005. Mathematical and numerical models for transfer of low-density lipoproteins through the arterial walls: a new methodology for the model set up with applications to the study of disturbed lumenal flow. J. Biomech. 38, 903–917. CrossRefGoogle Scholar
  21. Resnick, N., Yahav, H., Shay-Salit, A., Shushy, M., Schubert, S., Zilberman, M., Chen, L., Wofovitz, E., 2003. Fluid shear stress and the vascular endothelium: for better and for worse. Progress Biophys. Molecular Biol. 81, 177–199(23). CrossRefGoogle Scholar
  22. Ross, R., 1999. Atherosclerosis—an inflammatory disease. N. Engl. J. Med. 340(2), 115–126. CrossRefGoogle Scholar
  23. Williams, K.J., Feig, J.E., Fisher, E.A., 2008. Rapid regression of atherosclerosis: insights from the clinical and experimental literature. Nat. Clinical Practice Cardiovasc. Med. 5(2), 91–102. CrossRefGoogle Scholar

Copyright information

© Society for Mathematical Biology 2010

Authors and Affiliations

  • Anna Ougrinovskaia
    • 1
  • Rosemary S. Thompson
    • 1
  • Mary R. Myerscough
    • 1
  1. 1.University of SydneySydneyAustralia

Personalised recommendations