Bulletin of Mathematical Biology

, Volume 72, Issue 7, pp 1783–1798 | Cite as

Quantifying the Extent of Lateral Gene Transfer Required to Avert a ‘Genome of Eden’

Original Article
  • 74 Downloads

Abstract

The complex pattern of presence and absence of many genes across different species provides tantalising clues as to how genes evolved through the processes of gene genesis, gene loss, and lateral gene transfer (LGT). The extent of LGT, particularly in prokaryotes, and its implications for creating a ‘network of life’ rather than a ‘tree of life’ is controversial. In this paper, we formally model the problem of quantifying LGT, and provide exact mathematical bounds, and new computational results. In particular, we investigate the computational complexity of quantifying the extent of LGT under the simple models of gene genesis, loss, and transfer on which a recent heuristic analysis of biological data relied. Our approach takes advantage of a relationship between LGT optimization and graph-theoretical concepts such as tree width and network flow.

Keywords

Tree Phylogenetic network Lateral gene transfer Tree-width 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andersson, J.O., 2005. Lateral gene transfer in eukaryotes. Cell. Mol. Life Sci. 62(11), 1182–1197. CrossRefGoogle Scholar
  2. Dagan, T., Martin, W., 2007. Ancestral genome sizes specify the minimum rate of lateral gene transfer during prokaryote evolution. Proc. Natl. Acad. Sci. USA 104, 870–875. CrossRefGoogle Scholar
  3. Dagan, T., Artzy-Randrup, Y., Martin, W., 2008. Modular networks and cumulative impact of lateral transfer in prokaryote genome evolution. Proc. Natl. Acad. Sci. USA 105, 10039–10044. CrossRefGoogle Scholar
  4. Diestel, R., 2006. Graph Theory, 3rd edn. Springer, Berlin. Google Scholar
  5. Doolittle, W.F., Bapteste, E., 2007. Pattern pluralism and the Tree of Life hypothesis. Proc. Natl. Acad. Sci. USA 104, 2043–2049. CrossRefGoogle Scholar
  6. Doolittle, W.F., Boucher, Y., Nesbø, C., Douady, C.J., Andersson, J.O., Roger, A.J., 2003. How big is the iceberg of which organellar genes in nuclear genomes are but the tip? Philos. Trans. R. Soc. B 358, 39–58. CrossRefGoogle Scholar
  7. Goldberg, A.V., Rao, S., 1998. Beyond the flow decomposition barrier. J. ACM 45(5), 783–797. MATHMathSciNetGoogle Scholar
  8. Even, S., Itai, A., Shamir, A., 1972. On the complexity of timetable and multi-commodity flow problems. SIAM J. Comput. 1(2), 188–202. CrossRefMathSciNetGoogle Scholar
  9. Felsenstein, J., 2004. Inferring Phylogenies. Sinauer Press, Sunderland. Google Scholar
  10. Fortune, S., Hopcroft, J., Wyllie, J., 1980. The directed subgraph homeomorphism problem. Theor. Comput. Sci. 10, 111–121. MATHCrossRefMathSciNetGoogle Scholar
  11. Gusfield, D., Eddhu, S., Langley, C., 2004. Optimal, efficient reconstruction of phylogenetic networks with constrained recombination. J. Bioinform. Comput. Biol. 2, 173–213. CrossRefGoogle Scholar
  12. Jin, G., Nakhleh, L., Snir, S., Tamir, T., 2007. Inferring phylogenetic networks by the maximum parsimony criterion: A case study. Mol. Biol. Evol. 24, 324–337. CrossRefGoogle Scholar
  13. Kimura, M., 1983. The Neutral Theory of Evolution. Cambridge University Press, Cambridge. CrossRefGoogle Scholar
  14. Mirkin, B.G., Fenner, T.I., Galperin, M.Y., Koonin, E.V., 2003. Algorithms for computing parsimonious evolutionary scenarios for genome evolution, the last universal common ancestor and dominance of lateral gene transfer in the evolution of prokaryotes. BMC Evol. Biol. 3, 2. CrossRefGoogle Scholar
  15. Spencer, M., Susko, E., Roger, A.J., 2006. Modelling prokaryote gene content. Evol. Bioinf. Online 2, 157–178. Google Scholar

Copyright information

© Society for Mathematical Biology 2010

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsUniversity of CanterburyChristchurchNew Zealand

Personalised recommendations