Bulletin of Mathematical Biology

, Volume 72, Issue 7, pp 1732–1759 | Cite as

Stability Analysis of a Simplified Yet Complete Model for Chronic Myelogenous Leukemia

  • Marie Doumic-Jauffret
  • Peter S. KimEmail author
  • Benoît Perthame
Original Article


We analyze the asymptotic behavior of a partial differential equation (PDE) model for hematopoiesis. This PDE model is derived from the original agent-based model formulated by Roeder (Nat. Med. 12(10):1181–1184, 2006), and it describes the progression of blood cell development from the stem cell to the terminally differentiated state.

To conduct our analysis, we start with the PDE model of Kim et al. (J. Theor. Biol. 246(1):33–69, 2007), which coincides very well with the simulation results obtained by Roeder et al. We simplify the PDE model to make it amenable to analysis and justify our approximations using numerical simulations. An analysis of the simplified PDE model proves to exhibit very similar properties to those of the original agent-based model, even if for slightly different parameters. Hence, the simplified model is of value in understanding the dynamics of hematopoiesis and of chronic myelogenous leukemia, and it presents the advantage of having fewer parameters, which makes comparison with both experimental data and alternative models much easier.


Age-structured equations Hematopoiesis Chronic myelogenous leukemia Model simplification 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adimy, M., Crauste, F., Ruan, S., 2005. A mathematical study of the hematopoiesis process with applications to chronic myelogenous leukemia. SIAM J. Appl. Math. 65(4), 1328–1352. zbMATHCrossRefMathSciNetGoogle Scholar
  2. Adimy, M., Crauste, F., El Abdllaoui, A., 2008. Discrete maturity-structured model of cell differentiation with applications to acute myelogenous leukemia. J. Biol. Syst. 16(3), 395–424. zbMATHCrossRefGoogle Scholar
  3. Arai, F., Hirao, A., Ohmura, M., Sato, H., Matsuoka, S., Takubo, K., Ito, K., Koh, G.Y., Suda, T., 2004. Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell 118, 149–161. CrossRefGoogle Scholar
  4. Bernard, S., Bélair, J., Mackey, M.C., 2003. Oscillations in cyclical neutropenia: new evidence based on mathematical modeling. J. Theor. Biol. 223(3), 283–298. CrossRefGoogle Scholar
  5. Bernard, S., Bélair, J., Mackey, M.C., 2004. Bifurcations in a white-blood cell production model. C. R. Biol. 227(3), 201–210. CrossRefGoogle Scholar
  6. Bonnet, D., Dick, J.E., 1997. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat. Med. 3(7), 730–737. CrossRefGoogle Scholar
  7. Bradford, G.B., Williams, B., Rossi, R., Bertoncello, I., 1997. Quiescence, cycling, and turnover in the primitive hematopoietic stem cell compartment. Exp. Hematol. 25(5), 445–453. Google Scholar
  8. Brikci, F.B., Clairambault, J., Perthame, B., 2007. Analysis of a molecular structured population model with possible polynomial growth for the cell division cycle. Math. Methods Model. Biophys. Phenom. 47(7–8), 699–713. Special Issue of Mathematical and Computer Modelling. Google Scholar
  9. Brikci, F.B., Clairambault, J., Perthame, B., Ribba, B., 2008. An age-and-cyclin structured cell population model for healthy and tumoral tissues. J. Math. Biol. 57(1), 91–110. zbMATHCrossRefMathSciNetGoogle Scholar
  10. Calvez, V., Lenuzza, N., Doumic, M., Deslys, J.-P., Mouthon, F., Perthame, B., 2010. Prion dynamic with size dependency-strain phenomena. J. Biol. Dyn. 4(1), 28–42. CrossRefMathSciNetGoogle Scholar
  11. Calvez, V., Lenuzza, N., Oelz, D., Deslys, J.-P., Laurent, P., Mouthon, F., Perthame, B., 2009. Size distribution dependence of prion aggregates infectivity. Math. Biosci. 217, 88–99. zbMATHCrossRefMathSciNetGoogle Scholar
  12. Cheshier, S.H., Morrison, S.J., Liao, X., Weissman, I.L., 1999. In vivo proliferation and cell cycle kinetics of long-term self-renewing. Proc. Natl. Acad. Sci. USA 96(6), 3120–3125. CrossRefGoogle Scholar
  13. Colijn, C., Mackey, M.C., 2005a. A mathematical model of hematopoiesis—I. Periodic chronic myelogenous leukemia. J. Theor. Biol. 237(2), 117–132. CrossRefMathSciNetGoogle Scholar
  14. Colijn, C., Mackey, M.C., 2005b. A mathematical model of hematopoiesis—II. Cyclical neutropenia. J. Theor. Biol. 237(2), 133–146. CrossRefMathSciNetGoogle Scholar
  15. DeConde, R., Kim, P.S., Levy, D., Lee, P.P., 2005. Post-transplantation dynamics of the immune response to chronic myelogenous leukemia. J. Theor. Biol. 236(1), 39–59. CrossRefMathSciNetGoogle Scholar
  16. Diekmann, O., van Gils, S.A., Verduyn-Lunel, S.M., Walther, H.-O., 1995. Delay Equations, Functional, Complex and Nonlinear Analysis. Appl. Math. Sciences, vol. 110. Springer, New York. zbMATHGoogle Scholar
  17. Doumic, M., 2007. Analysis of a population model structured by the cells molecular content. Math. Methods Model. Biophys. Phenom. 2(3), 121–152. CrossRefMathSciNetGoogle Scholar
  18. Doumic, M., Perthame, B., Zubelli, J.P., 2009. Numerical solution of an inverse problem in size-structured population dynamics. Inverse Probl. 25. Google Scholar
  19. Druker, B.J., Lydon, N.B., 2000. Lessons learned from the development of an ABL tyrosine kinase inhibitor for chronic myelogenous leukemia. J. Clin. Invest. 105(1), 3–7. CrossRefGoogle Scholar
  20. Engelborghs, K., Luzyanina, T., Samaey, G., 2001. DDE-BIFTOOL v. 2.00: A Matlab package for bifurcation analysis of delay differential equations.
  21. Fokas, A.S., Keller, J.B., Clarkson, B.D., 1991. Mathematical model of granulocytopoiesis and chronic myelogenous leukemia. Cancer Res. 51(8), 2084–2091. Google Scholar
  22. Kiel, M.J., Yilmaz, O.H., Iwashita, T., Yilmaz, O.H., Terhorst, C., Morrison, S.J., 2005. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121, 1109–1121. CrossRefGoogle Scholar
  23. Kim, P.S., Lee, P.P., Levy, D., 2007. Modeling regulation mechanisms of the immune system. J. Theor. Biol. 246(1), 33–69. CrossRefMathSciNetGoogle Scholar
  24. Kim, P.S., Lee, P.P., Levy, D., 2008a. Dynamics and potential impact of the immune response to chronic myelogenous leukemia. PLoS Comput. Biol. 4(6), e1000095. CrossRefMathSciNetGoogle Scholar
  25. Kim, P.S., Lee, P.P., Levy, D., 2008b. Modeling imatinib-treated chronic myelogenous leukemia: reducing the complexity of agent-based models. Bull. Math. Biol. 70(3), 728–744. zbMATHCrossRefMathSciNetGoogle Scholar
  26. Kim, P.S., Lee, P.P., Levy, D., 2008c. A PDE model for imatinib-treated chronic myelogenous leukemia. Bull. Math. Biol. 70(7), 1994–2016. CrossRefMathSciNetGoogle Scholar
  27. Komarova, N.L., Wodarz, D., 2005. Drug resistance in cancer: principles of emergence and prevention. Proc. Natl. Acad. Sci. USA 102(27), 9714–9719. CrossRefGoogle Scholar
  28. Magal, P., Ruan, S., 2009. Center manifolds for semilinear equations with non-dense domain and applications on Hopf bifurcation in age structured models. Mem. Am. Math. Soc. 202(951). Google Scholar
  29. Marciniak, A., Stiehl, T., Ho, A.D., Jaeger, W., Wagner, W., 2008. Modeling asymmetric cell division in hematopietic stem cells—regulation of self-renewal is essential for efficient repopulation. Stem Cells Dev. 17, 1–10. CrossRefGoogle Scholar
  30. Michel, P., Mischler, S., Perthame, B., 2005. General relative entropy inequality: an illustration on growth models. J. Math. Pures Appl. 84, 1235–1260. zbMATHMathSciNetGoogle Scholar
  31. Michor, F., 2008. Mathematical models of cancer stem cells. J. Clin. Oncol. 26(17), 2854–2861. CrossRefGoogle Scholar
  32. Michor, F., Hughes, T.P., Iwasa, Y., Branford, S., Shah, N.P., Sawyers, C.L., Nowak, M.A., 2005. Dynamics of chronic myeloid leukemia. Nature 435(7046), 1267–1270. CrossRefGoogle Scholar
  33. Moore, H., Li, N.K., 2004. A mathematical model for chronic myelogenous leukemia (CML) and T cell interaction. J. Theor. Biol. 225(4), 513–523. CrossRefMathSciNetGoogle Scholar
  34. Neiman, B., 2002. A mathematical model of chronic myelogenous leukemia. Master’s thesis, University College, Oxford University, Oxford, UK. Google Scholar
  35. Perthame, B., 2007. Transport equations arising in biology. In: Frontiers in Mathematics, Birkhauser, Boston. Google Scholar
  36. Perthame, B., Zubelli, J.P., 2007. On the inverse problem for a size-structured population model. Inverse Probl. 23(3), 1037–1052. zbMATHCrossRefMathSciNetGoogle Scholar
  37. Pujo-Menjouet, L., Mackey, M.C., 2004. Contribution to the study of periodic chronic myelogenous leukemia. C. R. Biol. 327, 235–244. CrossRefGoogle Scholar
  38. Roeder, I., 2005. Dynamic modeling of hematopoietic stem cell organization—design and validation of the new concept of within-tissue plasticity. PhD thesis, University of Leipzig, Leipzig, Germany. Google Scholar
  39. Roeder, I., Horn, M., Glauche, I., Hochhaus, A., Mueller, M.C., Loeffler, M., 2006. Dynamic modeling of imatinib-treated chronic myeloid leukemia: functional insights and clinical implications. Nat. Med. 12(10), 1181–1184. CrossRefGoogle Scholar
  40. Roeder, I., Herberg, M., Horn, M., 2009. An “age”-structured model of hematopoietic stem cell organization with application to chronic myeloid leukemia. Bull. Math. Biol. 71(3), 602–626. zbMATHCrossRefMathSciNetGoogle Scholar
  41. Taichman, R.S., 2005. Blood and bone: two tissues whose fates are intertwined to create the hematopoietic stem-cell niche. Blood 105, 2631–2639. CrossRefGoogle Scholar
  42. Thijsen, S.F.T., Schuurhuis, G.J., van Oostveen, J.W., Ossenkoppele, G.J., 1999. Chronic mlyeloid leukemia from basics to bedside. Leukemia 13(11), 1646–1674. CrossRefGoogle Scholar
  43. Watt, F.M., Hogan, B.L., 2000. Out of Eden: stem cells and their niches. Science 287, 1427–1430. CrossRefGoogle Scholar

Copyright information

© Society for Mathematical Biology 2009

Authors and Affiliations

  • Marie Doumic-Jauffret
    • 1
    • 2
  • Peter S. Kim
    • 3
    Email author
  • Benoît Perthame
    • 1
    • 2
  1. 1.INRIA Paris-RocquencourtBANGLeChesnay CedexFrance
  2. 2.Laboratoire J.-L. LionsUniversité Pierre et Marie Curie, CNRS UMR7598Paris Cedex 05France
  3. 3.Department of MathematicsUniversity of UtahSalt Lake CityUSA

Personalised recommendations