Advertisement

Bulletin of Mathematical Biology

, Volume 72, Issue 4, pp 780–804 | Cite as

Dynamics of Notch Activity in a Model of Interacting Signaling Pathways

  • Majid Bani-YaghoubEmail author
  • David E. Amundsen
Original Article

Abstract

Networks of interacting signaling pathways are formulated with systems of reaction-diffusion (RD) equations. We show that weak interactions between signaling pathways have negligible effects on formation of spatial patterns of signaling molecules. In particular, a weak interaction between Retinoic Acid (RA) and Notch signaling pathways does not change dynamics of Notch activity in the spatial domain. Conversely, large interactions of signaling pathways can influence effects of each signaling pathway. When the RD system is largely perturbed by RA-Notch interactions, new spatial patterns of Notch activity are obtained. Moreover, analysis of the perturbed Homogeneous System (HS) indicates that the system admits bifurcating periodic orbits near a Hopf bifurcation point. Starting from a neighborhood of the Hopf bifurcation, oscillatory standing waves of Notch activity are numerically observed. This is of particular interest since recent laboratory experiments confirm oscillatory dynamics of Notch activity.

Notch Signaling pathways Reaction–diffusion Turing mechanism 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

Below is the link to the electronic supplementary material. (AVI 9.1 MB)

Below is the link to the electronic supplementary material. (AVI 8.85 MB)

Below is the link to the electronic supplementary material. (AVI 13.9 MB)

References

  1. Abed, E.H., 1988. A simple proof of stability on the center manifold for Hopf bifurcation. SIAM Rev. 30(3), 487–491. CrossRefMathSciNetGoogle Scholar
  2. Al-Omari, J.F.M., Gourley, S.A., 2003. Stability and traveling fronts in Lotka-Volterra competition models with stage structure. SIAM J. Appl. Math. 63, 2063–2086. zbMATHCrossRefMathSciNetGoogle Scholar
  3. Andersen, S.S., Bi, G., 2000. Axon formation: a molecular model for the generation of neuronal polarity. BioEssays 22, 172–179. CrossRefGoogle Scholar
  4. Aragon, J.L., Torres, M., Gil, D., Barrio, R.A., Maini, P.K., 2002. Turing patterns with pentagonal symmetry. Phys. Rev. E 65, 051913. CrossRefMathSciNetGoogle Scholar
  5. Arnold, V.I., 1973. Ordinary Differential Equations. MIT Press, Cambridge. zbMATHGoogle Scholar
  6. Aulehla, A., Pourquié, O., 2008. Oscillating signaling pathways during embryonic development. Curr. Opin. Cell Biol. 20(6), 632–637. CrossRefGoogle Scholar
  7. Bani-Yaghoub, M., Amundsen, D.E., 2006. Turing-type instabilities in a mathematical model of Notch and Retinoic Acid pathways. WSEAS Trans. Biol. Biomed. 3(2), 89–96. Google Scholar
  8. Bani-Yaghoub, M., Amundsen, D.E., 2008. Study and simulation of reaction-diffusion systems affected by interacting signaling pathways. Acta Biotheoretica 56(4), 315–328. CrossRefGoogle Scholar
  9. Barrio, R.A., Varea, C., Aragon, J.L., 1999. A two-dimensional numerical study of spatial pattern formation in interacting systems. Bull. Math. Biol. 61, 483–505. CrossRefGoogle Scholar
  10. Benson, D.L., Maini, P.K., Sherratt, J.A., 1998. Unravelling the Turing bifurcation using spatially varying diffusion coefficients. J. Math. Biol. 37, 381–417. zbMATHCrossRefMathSciNetGoogle Scholar
  11. Blokzijl, A., Dahlqvist, C., Reissmann, E., et al., 2003. Cross-talk between the Notch and TGF-β signaling pathways mediated by interaction of the Notch intracellular domain with Smad3. J. Cell Biol. 163(4), 723–728. CrossRefGoogle Scholar
  12. Carr, J., 1981. Application of Center Manifold Theory. Springer, New York. Google Scholar
  13. Clagett-Dame, M., McNeill, E.M., Muley, P.D., 2006. Role of all-trans retinoic acid in neurite outgrowth and axonal elongation. J. Neurobiol. 66(7), 739–756. CrossRefGoogle Scholar
  14. Collier, J.R., Monk, N.M., Maini, P.K., Lewis, J.H., 1996. Pattern formation by lateral inhibition with feedback: a mathematical model of Delta-Notch intercellular signaling. J. Theor. Biol. 183, 429–446. CrossRefGoogle Scholar
  15. Cummings, F.W., 2000. A model of pattern formation based on Signaling pathway. J. Theor. Biol. 207, 107–116. CrossRefGoogle Scholar
  16. Cummings, F.W., 2004. A model of morphogenesis. Physica A 339, 531–547. CrossRefMathSciNetGoogle Scholar
  17. de Joussineau, C., Soule, J., Martin, M., et al., 2003. Delta-promoted filopodia mediate long-range lateral inhibition in Drosophila. Nature 426, 555–559. CrossRefGoogle Scholar
  18. de Strooper, B., Annaert, W., 2001. Where Notch and Wnt signaling meet: The presenilin hub. J. Cell Biol. 152(4), F17–F20. CrossRefGoogle Scholar
  19. Drazin, P.G., 1992. Nonlinear Systems. Cambridge University Press, Cambridge. Google Scholar
  20. Eisner, J., Kucera, M., 2000. Bifurcation of Solutions to Reaction–Diffusion Systems with Jumping Nonlinearities, book chapter, Applied Nonlinear Analysis, Springer US. Google Scholar
  21. Ermentrout, G.B., 1991. Stripes or spots? Nonlinear effects in bifurcation of reaction diffusion equations on the square. Proc. R. Soc. Lond. A 434, 413–417. zbMATHCrossRefMathSciNetGoogle Scholar
  22. Franklin, J.L., Berechid, B.E., Cutting, F.B., et al., 1999. Autonomous and non-autonomous regulation of mammalian neurite development by Notch1 and Delta1. Curr. Biol. 9, 1448–1457. CrossRefGoogle Scholar
  23. Faria, T., Huang, W., Wu, J., 2006. Traveling waves for delayed reaction–diffusion equations with global response. Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 462(2065), 229–261. zbMATHCrossRefMathSciNetGoogle Scholar
  24. Golubitsky, M., Knobloch, E., Stewart, I., 2000. Target patterns and spirals in planar reaction–diffusion systems. J. Nonlinear Sci. 10, 333–354. zbMATHCrossRefMathSciNetGoogle Scholar
  25. Guckenheimer, J., Holmes, P., 1983. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer, New York. zbMATHGoogle Scholar
  26. Hagan, P.S., 1981. Target patterns in reaction–diffusion systems. Adv. Appl. Math. 2, 400–416. zbMATHCrossRefMathSciNetGoogle Scholar
  27. Hall, J.M., 1981. On the solution of reaction–diffusion equations. IMA J. Appl. Math. 272, 177–194. CrossRefGoogle Scholar
  28. Hartman, P., 1964. Ordinary Differential Equations. Wiley, New York. zbMATHGoogle Scholar
  29. Hopf, E., 1942. Abzweigung einer periodischen Loesung von einer stationaeren Loesung eines Differential systems. Ber. Math.-Phys. Kl. Saechs Adad Wiss. Leipz. 94, 1. Google Scholar
  30. Hunter, K., Maden, M., Summerbell, D., et al., 1991. Retinoic acid stimulates neurite outgrowth in the amphibian spinal cord. Proc. Natl. Acad. Sci. 88, 3666–3670. CrossRefGoogle Scholar
  31. Jost, J., 2007. Theorem 5.2.1 in Partial Differential Equations, 2nd edn. Springer, New York. Google Scholar
  32. Jun, T., Gjoerup, O., Roberts, T., 1999. Tangled webs: evidence of cross-talk between c-Raf-1 and Akt. Sci. STKE. doi: 10.1126/stke.1999.13.pe1.
  33. Kageyama, R., Masamizu, Y., Niwa, Y., 2008. Oscillator mechanism of notch pathway in the segmentation clock. Dev. Dyn. 236(6), 1403–1409. CrossRefGoogle Scholar
  34. Kopell, N., Howard, L.N., 1973. Plane wave solutions to reaction–diffusion equations. Stud. Appl. Math. 42, 291–328. MathSciNetGoogle Scholar
  35. Larrson, S., Thomee, V., 2003. Partial Differential Equations with Numerical Methods. Springer, Berlin. Google Scholar
  36. McLean, D.R., van Ooyen, A., Graham, B.P., 2004. Continuum model for tubulin-driven neurite elongation. Neurocomput. 58–60, 511–516. CrossRefGoogle Scholar
  37. Murray, J.D., 2003a. Mathematical Biology I. Springer, New York. Google Scholar
  38. Murray, J.D., 2003b. Mathematical Biology II. Springer, New York. Google Scholar
  39. Nagao, M., Sugimori, M., Nakafuku, M., 2007. Cross Talk between Notch and Growth Factor/Cytokine signaling pathways in neural stem cells. Mol. Cell. Biol. 27(11), 3982–3994. CrossRefGoogle Scholar
  40. Nagorcka, B.N., Mooney, J.R., 1992. From stripes to spots: prepatterns which can be produced in the skin by reaction–diffusion systems. IMA J. Math. Appl. Med. Biol. 9, 249–267. zbMATHCrossRefGoogle Scholar
  41. Napoli, J.L., 1996. Biochemical pathways of retinoid transport, metabolism, and signal transduction. Clin. Immunol. Immunopathol. 80(3), S52–S62. CrossRefGoogle Scholar
  42. Needham, D.J., 1992. A formal theory concerning the generation and propagation of traveling wave-fronts in reaction diffusion equations. Q. J. Mech. Appl. Math. 45(3), 469–498. zbMATHCrossRefMathSciNetGoogle Scholar
  43. Ockendon, J., Howison, S., Lacey, A., Movchan, A., 2003. Applied Partial Differential Equations, revised edn., pp. 271–287. Oxford University Press, London. zbMATHGoogle Scholar
  44. Ouchi, N., Kobayashi, H., Kihara, S., et al., 2004. Adiponectin stimulates angiogenesis by promoting cross-talk between AMP-activated protein kinase and Akt signaling in endothelial cells. J. Biol. Chem. 279(2), 1304–1309. CrossRefGoogle Scholar
  45. Perko, L., 2001. Differential Equations and Dynamical Systems, 3rd edn. Springer, New York. zbMATHGoogle Scholar
  46. Rauch, E.M., Millonas, M.M., 2004. The role of trans-membrane signal transduction in Turing-type cellular pattern formation. J. Theor. Biol. 226, 401–407. CrossRefMathSciNetGoogle Scholar
  47. Ruelle, D., Takens, F., 1971. On the nature of turbulence. Commun. Math. Phys. 20, 167. zbMATHCrossRefMathSciNetGoogle Scholar
  48. Sakamoto, K., Suzuki, H., 2004. Spherically symmetric internal layers for activator-inhibitor systems: I. Existence by a Lyapunov-Schmidt reduction. J. Differ. Equ. 204, 56–92. zbMATHMathSciNetGoogle Scholar
  49. Scheel, A., 1998. Bifurcation to spiral waves in reaction-diffusion systems. SIAM J. Math. Anal. Arch. 29(6), 1399–1418. zbMATHCrossRefMathSciNetGoogle Scholar
  50. Shimojo, H., Ohtsuka, T., Kageyama, R., 2008. Oscillations in notch signaling regulate maintenance of neural progenitors. Neuron 58(1), 52–64. CrossRefGoogle Scholar
  51. Sternberg, P.W., 1993. Falling off the knife edge. Curr. Biol. 3, 763–765. CrossRefGoogle Scholar
  52. Turing, A.M., 1952. The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond., Ser. B 237, 37–72. CrossRefGoogle Scholar
  53. Webb, S.D., Owen, M.R., 2004. Intra-membrane ligand diffusion and cell shape modulate juxtacrine patterning. J. Theor. Biol. 230, 99–117. CrossRefMathSciNetGoogle Scholar
  54. Yang, Y.L., Liao, J.C., 2005. Determination of functional interactions among signaling pathways in Escherichia coli K-12. Metab. Eng. 7(4), 280–290. CrossRefMathSciNetGoogle Scholar
  55. Zhabotinsky, A.M., Zaikin, A.N., 1971. In: Sel’kov, E.E. (Ed.), Oscillating Processes in Biological and Chemical Systems II, p. 279. Nauka, Puschino. Google Scholar
  56. Zhu, M., Murray, J.D., 1995. Parameter domains for generating spatial patterns: a comparison of reaction-diffusion and cell-chemotaxis models. Int. J. Bifurc. Chaos 5, 1503–1524. zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Society for Mathematical Biology 2009

Authors and Affiliations

  1. 1.School of Mathematics and StatisticsCarleton UniversityOttawaCanada

Personalised recommendations