Advertisement

Bulletin of Mathematical Biology

, Volume 72, Issue 3, pp 645–680 | Cite as

Modelling and Analysis of Planar Cell Polarity

  • S. SchambergEmail author
  • P. Houston
  • N. A. M. Monk
  • M. R. Owen
Original Article

Abstract

Planar cell polarity (PCP) occurs in the epithelia of many animals and can lead to the alignment of hairs, bristles, and feathers. Here, we present two approaches to modelling this phenomenon. The aim is to discover the basic mechanisms that drive PCP, while keeping the models mathematically tractable. We present a feedback and diffusion model, in which adjacent cell sides of neighbouring cells are coupled by a negative feedback loop and diffusion acts within the cell. This approach can give rise to polarity, but also to period two patterns. Polarisation arises via an instability provided a sufficiently strong feedback and sufficiently weak diffusion. Moreover, we discuss a conservative model in which proteins within a cell are redistributed depending on the amount of proteins in the neighbouring cells, coupled with intracellular diffusion. In this case, polarity can arise from weakly polarised initial conditions or via a wave provided the diffusion is weak enough. Both models can overcome small anomalies in the initial conditions. Furthermore, the range of the effects of groups of cells with different properties than the surrounding cells depends on the strength of the initial global cue and the intracellular diffusion.

Keywords

Drosophila Reaction–diffusion equations Frizzled 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adler, P.N., 2002. Planar signaling and morphogenesis in Drosophila. Dev. Cell 2, 525–535. CrossRefGoogle Scholar
  2. Adler, P.N., Krasnow, R.E., Liu, J., 1997. Tissue polarity points from cells that have higher frizzled levels towards cells that have lower frizzled levels. Curr. Biol. 7, 940–949. CrossRefGoogle Scholar
  3. Amonlirdviman, K., Khare, N.A., Tree, D.R.P., Chen, W.-S., Axelrod, J.D., Tomlin, C.J., 2005. Mathematical modeling of planar cell polarity to understand domineering nonautonomy. Science 307, 423–426. CrossRefGoogle Scholar
  4. Belle, A., Tanay, A., Bitincka, L., Shamir, R., O’Shea, E., 2006. Quantification of protein half-lives in the budding yeast proteome. Proc. Natl. Acad. Sci. USA, 103, 13004–13009. CrossRefGoogle Scholar
  5. Chen, W.-S., Antic, D., Matis, M., Logan, C.Y., Povelones, M., Abderson, G.A., Nusse, R., Axelrod, J.D., 2008. Asymmetric homotypic interactions of the atypical cadherin flamingo mediate intercellular polarity signaling. Cell 133, 1093–1105. CrossRefGoogle Scholar
  6. Collier, J.R., Monk, N.A.M., Maini, P.K., Lewis, J.H., 1996. Pattern formation by lateral inhibition with feedback: A mathematical model of Delta-Notch intercellular signalling. J. Theor. Biol. 183, 429–446. CrossRefGoogle Scholar
  7. Elmer, C.E., Van Vleck, E.S., 1999. Analysis and computation of travelling wave solutions of bistable differential-difference equations. Nonlinearity 12, 771–798. zbMATHCrossRefMathSciNetGoogle Scholar
  8. Gagliardi, M., Piddini, E., Vincent, J.-P., 2008. Endocytosis: A positive or a negative influence on Wnt signalling? Traffic 9, 1–9. CrossRefGoogle Scholar
  9. Kacmarczyk, T., Craddock, E.M., 2000. Cell size is a factor in body size variation among Hawaiian and nonHawaiian species of Drosophila. Drosoph. Inf. Serv. 83, 144–148. Google Scholar
  10. Keener, J.P., 1987. Propagation and its failure in coupled systems of discrete excitable cells. SIAM J. Appl. Math. 47, 556–572. zbMATHCrossRefMathSciNetGoogle Scholar
  11. Kholodenko, B.N., Hoek, J.B., Westerhoff, H.V., 2000. Why cytoplasmic signalling proteins should be recruited to cell membranes. Cell Biol. 10, 173–178. Google Scholar
  12. Le Garrec, J.-F., Kerszberg, M., 2008. Modeling polarity buildup and cell fate decision in the fly eye: Insight into the connection between the PCP and Notch pathways. Dev. Genes Evol. 218, 413–426. CrossRefGoogle Scholar
  13. Le Garrec, J.-F., Lopez, P., Kerszberg, M., 2006. Establishment and maintenance of planar epithelial cell polarity by asymmetric cadherin bridges: A computer model. Dev. Dyn. 235, 235–246. CrossRefGoogle Scholar
  14. Murray, J.D., 1989. Mathematical Biology. Springer, Berlin. zbMATHGoogle Scholar
  15. Owen, M.R., 2002. Waves and propagation failure in discrete space models with nonlinear coupling and feedback. Physica D 173, 59–76. zbMATHCrossRefMathSciNetGoogle Scholar
  16. Plahte, E., Øyehaug, L., 2007. Pattern-generating travelling waves in a discrete multicellular system with lateral inhibition. Physica D 226, 117–128. zbMATHMathSciNetGoogle Scholar
  17. Raffard, R.L., Amonlirdviman, K., Axelrod, J.D., Tomlin, C.J., 2008. An adjoint-based parameter identification algorithm applied to planar cell polarity signaling. IEEE Trans. Automat. Contr. 53 (Special Issue on Systems Biology), 109–121. DOI:  10.1109/TAC.2007.911362. CrossRefMathSciNetGoogle Scholar
  18. Shimada, Y., Yonemura, S., Ohkura, H., Strutt, D., Uemura, T., 2006. Polarized transport of Frizzled along the planar microtubule arrays in Drosophila wing epithelium. Dev. Cell 10(4), 209–222. CrossRefGoogle Scholar
  19. Simons, M., Mlodzik, M., 2008. Planar cell polarity signaling: From fly development to human disease. Annu. Rev. Genet. 42, 517–540. CrossRefGoogle Scholar
  20. Strutt, D., 2002. The asymmetric subcellular localisation of components of the planar polarity pathway. Semim. Cell Dev. Biol. 13, 225–231. CrossRefGoogle Scholar
  21. Strutt, D., Strutt, H., 2007. Differential activities of the core planar polarity proteins during Drosophila wing patterning. Dev. Biol. 302, 181–194. CrossRefGoogle Scholar
  22. Vinson, C.R., Adler, P.N., 1987. Directional non-cell autonomy and the transmission of polarity information by the frizzled gene of Drosophila. Nature 329, 549–551. CrossRefGoogle Scholar
  23. Wu, J., Mlodzik, M., 2008. The frizzled extracellular domain is a ligand for Van Gogh/Stbm during nonautonomous planar cell polarity signaling. Dev. Cell 15, 462–469. CrossRefGoogle Scholar
  24. Xu, T., Rubin, G.M., 1993. Analysis of genetic mosaics in developing and adult Drosophila tissues. Development 117, 1223–1237. Google Scholar
  25. Zallen, J.A., 2007. Planar polarity and tissue morphogenesis. Cell 129, 1051–1063. CrossRefGoogle Scholar

Copyright information

© Society for Mathematical Biology 2009

Authors and Affiliations

  • S. Schamberg
    • 1
    Email author
  • P. Houston
    • 1
  • N. A. M. Monk
    • 1
  • M. R. Owen
    • 1
  1. 1.School of Mathematical SciencesUniversity of NottinghamUniversity ParkUK

Personalised recommendations