Bulletin of Mathematical Biology

, Volume 72, Issue 3, pp 611–644 | Cite as

Emergent Group Dynamics Governed by Regulatory Cells Produce a Robust Primary T Cell Response

Original Article

Abstract

The currently accepted paradigm for the primary T cell response is that effector T cells commit to autonomous developmental programs. This concept is based on several experiments that have demonstrated that the dynamics of a T cell response is largely determined shortly after antigen exposure and that T cell dynamics do not depend on the level and duration of antigen stimulation. Another experimental study has also shown that T cell responses are robust to variations in antigen-specific precursor frequency.

Various mathematical models have corroborated the first result that programmed T cell responses are insensitive to the level of antigen stimulation. However, this paper proposes that programmed responses do not entirely explain the robustness of T cell dynamics to variations in precursor frequency. This work studies the hypothesis that the dynamics of a T cell response may also be governed by a feedback loop involving adaptive regulatory cells rather than by intrinsic developmental programs.

We formulate two mathematical models based on T cell developmental programs. In one model, effector cells undergo a fixed number of divisions before dying. In the second model, effector cells live for a fixed time during which they may divide. The study of these models suggests that developmental programs are not sufficiently robust as they produce an immune response that directly scales with precursor frequencies. Consequently, we derive a third model based on the principle that adaptive regulatory T cells develop in the course of an immune response and suppress effector cells. Our simulations show that this feedback mechanism responds robustly over a range of at least four orders of magnitude of precursor frequencies.

We conclude that the proliferation program paradigm does not entirely capture the observed robustness of T cell responses to variations in precursor frequency. We propose an alternative mechanism by which the primary T cell response is governed by an emergent group dynamic and not by individual T cell programs.

Keywords

Delay differential equations Age-structured equations Adaptive regulatory T cells T cell response 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allan, M.J., Callard, R., Stark, J., Yates, A., 2004. Comparing antigen-independent mechanisms of T cell regulation. J. Theor. Biol. 228(1), 81–95. CrossRefMathSciNetGoogle Scholar
  2. Antia, R., Bergstrom, C.T., Pilyugin, S.S., Kaech, S.M., Ahmed, R., 2003. Models of CD8+ responses: 1. What is the antigen-independent proliferation program. J. Theor. Biol. 221(4), 585–598. CrossRefMathSciNetGoogle Scholar
  3. Badovinac, V.P., Haring, J.S., Harty, J.T., 2007. Initial T cell receptor transgenic cell precursor frequency dictates critical aspects of the CD8(+) T cell response to infection. Immunity 26(6), 827–841. CrossRefGoogle Scholar
  4. Belz, G.T., Zhang, L., Lay, M.D., Kupresanin, F., Davenport, M.P., 2007. Killer T cells regulate antigen presentation for early expansion of memory, but not naïve, CD8+ T cell. Proc. Natl. Acad. Sci. USA 104(15), 6341–6346. CrossRefGoogle Scholar
  5. Blattman, J.N., Antia, R., Sourdive, D.J., Wang, X., Kaech, S.M., Murali-Krishna, K., Altman, J.D., Ahmed, R., 2002. Estimating the precursor frequency of naive antigen-specific cd8 t cells. J. Exp. Med. 195(5), 657–664. CrossRefGoogle Scholar
  6. Burroughs, N.J., de Oliveira, B.M.P.M., Pinto, A.A., 2006. Regulatory T cell adjustment of quorum growth thresholds and the control of local immune responses. J. Theor. Biol. 241(1), 134–141. CrossRefGoogle Scholar
  7. Cantor, H., Shen, F.W., Boyse, E.A., 1976. Separation of helper T cells from suppressor T cells expressing different Ly components. II. Activation by antigen: after immunization, antigen-specific suppressor and helper activities are mediated by distinct T-cell subclasses. J. Exp. Med. 143, 1391–1340. CrossRefGoogle Scholar
  8. Carneiro, J., Paixão, T., Milutinovic, D., Sousa, J., Leon, K., Gardner, R., Faro, J., 2005. Immunological self-tolerance: Lessons from mathematical modeling. J. Comput. Appl. Math. 184(1), 77–100. CrossRefMathSciNetMATHGoogle Scholar
  9. Catron, D.M., Itano, A.A., Pape, K.A., Mueller, D.L., Jenkins, M.K., 2004. Visualizing the first 50 hr of the primary immune response to a soluble antigen. Immunity 21(3), 341–347. CrossRefGoogle Scholar
  10. Chang, C.C., Ciubotariu, R., Manavalan, J.S., Yuan, J., Colovai, A.I., Piazza, F., Lederman, S., Colonna, M., Cortesini, R., Dalla-Favera, R., Suciu-Foca, N., 2002. Tolerization of dendritic cells by T(S) cells: the crucial role of inhibitory receptors ILT3 and ILT4. Nat. Immunol. 3(3), 237–243. CrossRefGoogle Scholar
  11. De Boer, R.J., Oprea, M., Antia, R., Murali-Krishna, K., Ahmed, R., Perelson, A.S., 2001. Recruitment times, proliferation, and apoptosis rates during the CD8(+) T-cell response to lymphocytic choriomeningitis virus. J. Virol. 75(22), 10663–10669. CrossRefGoogle Scholar
  12. De Boer, R.J., Homann, D., Perelson, A.S., 2003. Different dynamics of CD4+ and CD8+ T cell responses during and after acute lymphocytic choriomeningitis virus infection. J. Immunol. 171(8), 3928–3935. Google Scholar
  13. Effros, R.B., Pawelec, G., 1997. Replicative senescence of T cells: does the Hayflick Limit lead to immune exhaustion? Immunol. Today 18(9), 450–454. CrossRefGoogle Scholar
  14. Fouchet, D., Regoes, R., 2008. A population dynamics analysis of the interaction between adaptive regulatory t cells and antigen presenting cells. PLoS ONE 3(5), e2306. CrossRefGoogle Scholar
  15. Haribhai, D., Lin, W., Relland, L.M., Truong, N., Williams, C.B., Chatila, T.A., 2007. Regulatory T cells dynamically control the primary immune response to foreign antigen. J. Immunol. 178(5), 2961–2972. Google Scholar
  16. Harris, N.L., Watt, V., Ronchese, F., Le Gros, G., 2002. Differential T cell function and fate in lymph node and nonlymphoid tissues. J. Exp. Med. 195(3), 317–326. CrossRefGoogle Scholar
  17. Janeway, C.A. Jr., Travers, P., Walport, M., Shlomchik, M.J., 2005. Immunobiology: The Immune System in Health and Disease, 6th edn. Garland, New York. Google Scholar
  18. Kaech, S.M., Ahmed, R., 2001. Memory CD8+ T cell differentiation: initial antigen encounter triggers a developmental program in naïve cells. Nat. Immunol. 2(5), 415–422. Google Scholar
  19. Kim, P.S., Lee, P.P., Levy, D., 2007. Modeling regulation mechanisms of the immune system. J. Theor. Biol. 246(1), 33–69. CrossRefMathSciNetGoogle Scholar
  20. León, K., Peréz, R., Lage, A., Carneiro, J., 2000. Modelling T-cell-mediated suppression dependent on interactions in multicellular conjugates. J. Theor. Biol. 207(2), 231–254. CrossRefGoogle Scholar
  21. León, K., Peréz, R., Lage, A., Carneiro, J., 2001. Three-cell interactions in T cell-mediated suppression? a mathematical analysis of its quantitative implications. J. Immunol. 166(9), 5356–5365. Google Scholar
  22. León, K., Lage, A., Carneiro, J., 2003. Tolerance and immunity in a mathematical model of T-cell mediated suppression. J. Theor. Biol. 225(1), 107–126. CrossRefGoogle Scholar
  23. León, K., Faro, J., Lage, A., Carneiro, J., 2004. Inverse correlation between the incidences of autoimmune disease and infection predicted by a model of T cell mediated tolerance. J Autoimmunity 22(1), 31–42. CrossRefGoogle Scholar
  24. León, K., Lage, A., Carneiro, J., 2007a. How regulatory CD25+CD4+ T cells impinge on tumor immunobiology? on the existence of two alternative dynamical classes of tumors. J. Theor. Biol. 247(1), 122–137. CrossRefGoogle Scholar
  25. León, K., Lage, A., Carneiro, J., 2007b. How regulatory CD25+CD4+ T cells impinge on tumor immunobiology: the differential response of tumors to therapies. J. Immunol. 179(9), 5659–5668. Google Scholar
  26. Mercado, R., Vijh, S., Allen, S.E., Kerksiek, K., Pilip, I.M., Pamer, E.G., 2000. Early programming of T cell populations responding to bacterial infection. J. Immunol. 165(12), 6833–6839. Google Scholar
  27. Mohri, H., Perelson, A.S., Tung, K., Ribeiro, R.M., Ramratnam, B., Markowitz, M., Kost, R., Hurley, A., Weinberger, L., Cesar, D., Hellerstein, M.K., Ho, D.D., 2001. Increased turnover of T lymphocytes in HIV-1 infection and its reduction by antiretroviral therapy. J. Exp. Med. 194(9), 1277–1287. CrossRefGoogle Scholar
  28. Razvi, E.S., Jiang, Z., Woda, B.A., Welsh, R.M., 1995. Lymphocyte apoptosis during the silencing of the immune response to acute viral infections in normal, lpr, and Bcl-2-transgenic mice. Am. J. Pathol. 147(1), 79–91. Google Scholar
  29. Renno, T., Attinger, A., Locatelli, S., Bakker, T., Vacheron, S., MacDonald, H.R., 1999. Cutting edge: apoptosis of superantigen-activated T cells occurs preferentially after a discrete number of cell divisions in vivo. J. Immunol. 162(11), 6312–6315. Google Scholar
  30. Sakaguchi, S., Sakaguchi, N., Asano, M., Itoh, M., Toda, M., 1995. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor a-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J. Immunol. 155(3), 1151–1164. Google Scholar
  31. Sakaguchi, S., Yamaguchi, T., Nomura, T., Ono, M., 2008. Regulatory t cells and immune tolerance. Cell 133(5), 775–787. CrossRefGoogle Scholar
  32. Taams, L.S., Vukmanovic-Stejic, M., Smith, J., Dunne, P.J., Fletcher, J.M., Plunkett, F.J., Ebeling, S.B., Lombardi, G., Rustin, M.H., Bijlsma, J.W., Lafeber, F.P., Salmon, M., Akbar, A.N., 2002. Antigen-specific T cell suppression by human CD4+CD25+ regulatory T cells. Eur. J. Immunol. 32(6), 1621–1630. CrossRefGoogle Scholar
  33. van Stipdonk, M.J., Lemmens, E.E., Schoenberger, S.P., 2001. Naïve CTLs require a single brief period of antigenic stimulation for clonal expansion and differentiation. Nat. Immunol. 2(5), 423–429. Google Scholar
  34. van Stipdonk, M.J., Hardenberg, G., Bijker, M.S., Lemmens, E.E., Droin, N.M., Green, D.R., Schoenberger, S.P., 2003. Dynamic programming of CD8+ T lymphocyte responses. Nat. Immunol. 4(4), 361–365. CrossRefGoogle Scholar
  35. Veiga-Fernandes, H., Walter, U., Bourgeois, C., McLean, A., Rocha, B., 2000. Response of naïve and memory CD8+ T cells to antigen stimulation in vivo. Nat. Immunol. 1(1), 47–53. CrossRefGoogle Scholar
  36. Walker, M.R., Kasprowicz, D.J., Gersuk, V.H., Benard, A., Van Landeghen, M., Buckner, J.H., Ziegler, S.F., 2003. Induction of FoxP3 and acquisition of T regulatory activity by stimulated human CD4+CD25- T cells. J. Clin. Invest. 112(9), 1437–1443. Google Scholar
  37. Walker, M.R., Carson, B.D., Nepom, G.T., Ziegler, S.F., Buckner, J.H., 2005. De novo generation of antigen-specific CD4+CD25+ regulatory T cells from human CD4+CD25-cells. Proc. Natl. Acad. Sci. USA 102(11), 4103–4108. CrossRefGoogle Scholar
  38. Wodarz, D., Thomsen, A.R., 2005. Effect of the CTL proliferation program on virus dynamics. Int. Immunol. 17(9), 1269–1276. CrossRefGoogle Scholar
  39. Yang, Y., Kim, D., Fathman, C.G., 1998. Regulation of programmed cell death following T cell activation in vivo. Int. Immunol. 10(2), 175–183. CrossRefGoogle Scholar

Copyright information

© Society for Mathematical Biology 2009

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of UtahSalt Lake CityUSA
  2. 2.Division of Hematology, Department of MedicineStanford UniversityStanfordUSA
  3. 3.Department of Mathematics and Center for Scientific Computation and Mathematical Modeling (CSCAMM)University of MarylandCollege ParkUSA

Personalised recommendations