Bulletin of Mathematical Biology

, Volume 72, Issue 2, pp 314–339 | Cite as

Maximum Urine Concentrating Capability in a Mathematical Model of the Inner Medulla of the Rat Kidney

  • Mariano Marcano
  • Anita T. Layton
  • Harold E. Layton
Original Article

Abstract

In a mathematical model of the urine concentrating mechanism of the inner medulla of the rat kidney, a nonlinear optimization technique was used to estimate parameter sets that maximize the urine-to-plasma osmolality ratio (U/P) while maintaining the urine flow rate within a plausible physiologic range. The model, which used a central core formulation, represented loops of Henle turning at all levels of the inner medulla and a composite collecting duct (CD). The parameters varied were: water flow and urea concentration in tubular fluid entering the descending thin limbs and the composite CD at the outer-inner medullary boundary; scaling factors for the number of loops of Henle and CDs as a function of medullary depth; location and increase rate of the urea permeability profile along the CD; and a scaling factor for the maximum rate of NaCl transport from the CD. The optimization algorithm sought to maximize a quantity E that equaled U/P minus a penalty function for insufficient urine flow. Maxima of E were sought by changing parameter values in the direction in parameter space in which E increased. The algorithm attained a maximum E that increased urine osmolality and inner medullary concentrating capability by 37.5% and 80.2%, respectively, above base-case values; the corresponding urine flow rate and the concentrations of NaCl and urea were all within or near reported experimental ranges. Our results predict that urine osmolality is particularly sensitive to three parameters: the urea concentration in tubular fluid entering the CD at the outer-inner medullary boundary, the location and increase rate of the urea permeability profile along the CD, and the rate of decrease of the CD population (and thus of CD surface area) along the cortico-medullary axis.

Keywords

Urine concentrating mechanism Countercurrent system Osmoregulation Optimization Inverse problem NaCl transport Urea transport 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Armsen, T., Reinhardt, H., 1971. Pflügers Arch. 326, 270. CrossRefGoogle Scholar
  2. Atherton, J.C., Hai, M.A., Thomas, S., 1968. J. Physiol. 197(2), 429. Google Scholar
  3. Atherton, J.C., Hai, M.A., Thomas, S., 1969. Pflügers Arch. 310, 281. CrossRefGoogle Scholar
  4. Beuchat, C.A., 1996. Am. J. Physiol. (Regul. Integr. Comp. Physiol. 40) 279, R157. Google Scholar
  5. Breinbauer, M., 1988. Diploma thesis, Tech. Univ. of Munich. Google Scholar
  6. Breinbauer, M., Lory, P., 1991. Appl. Math. Comput. 44, 195. MATHCrossRefGoogle Scholar
  7. Chou, C.-L., Knepper, M., 1992. Am. J. Physiol. (Renal Fluid Electrolyte Physiol. 32) 263, F417. Google Scholar
  8. Fenton, R.A., Chou, C.-L., Sowersby, H., Smith, C.P., Knepper, M.A., 2006. Am. J. Physiol., Renal Physiol. 291, F148. CrossRefGoogle Scholar
  9. Friedman, M.H., 1986. Principles and Models of Biological Transport. Springer, Berlin. Google Scholar
  10. Gamble, J.L., McKhann, C.F., Butler, A.M., Tuthill, E., 1934. Am. J. Physiol. 109, 139. Google Scholar
  11. Greger, R., Velázquez, H., 1987. Kidney Int. 31, 590. CrossRefGoogle Scholar
  12. Hai, M.A., Thomas, S., 1969. Pflügers Arch. 310, 297. CrossRefGoogle Scholar
  13. Han, J.S., Thompson, K.A., Chou, C.L., Knepper, M.A., 1992. J. Am. Soc. Nephrol. 2, 1677. Google Scholar
  14. Hervy, S., Thomas, S., 2003. Am. J. Physiol., Renal Physiol. 284, F65. Google Scholar
  15. Imai, M., 1977. Am. J. Physiol. (Renal Fluid Electrolyte Physiol. 1) 232, F201. Google Scholar
  16. Jamison, R.L., Kriz, W., 1982. Urinary Concentrating Mechanism: Structure and Function. Oxford University Press, New York. Google Scholar
  17. Kato, A., Naruse, M., Knepper, M., Sands, J., 1998. J. Am. Soc. Nephrol. 9, 737. Google Scholar
  18. Kedem, O., Katchalsky, A., 1958. Biochim. Biophys. Acta 27, 229. CrossRefGoogle Scholar
  19. Kim, D., Klein, J.D., Racine, S., Murrell, B.P., Sands, J.M., 2005. Am. J. Physiol., Renal Physiol. 288, F188. CrossRefGoogle Scholar
  20. Kim, S., Tewarson, R.P., 1996. Appl. Math. Lett. 9(3), 77. CrossRefMathSciNetGoogle Scholar
  21. Knepper, M., Saidel, G., Hascall, V., Dwyer, T., 2003. Am. J. Physiol., Renal Physiol. 284, F433. Google Scholar
  22. Kokko, J.P., Rector, F.C., 1972. Kidney Int. 2, 214. CrossRefGoogle Scholar
  23. Layton, A.T., Layton, H.E., 2002. Math. Biosci. 45, 549. MATHMathSciNetGoogle Scholar
  24. Layton, A.T., Layton, H.E., 2005a. Am. J. Physiol., Renal Physiol. 289, F1346. CrossRefGoogle Scholar
  25. Layton, A.T., Layton, H.E., 2005b. Am. J. Physiol., Renal Physiol. 289, F1367. CrossRefGoogle Scholar
  26. Layton, A.T., Pannabecker, T.L., Dantzler, W.H., Layton, H.E., 2004. Am. J. Physiol., Renal Physiol. 287, F816. CrossRefGoogle Scholar
  27. Layton, H.E., 1986. Biophys. J. 49, 1033. CrossRefGoogle Scholar
  28. Layton, H.E., 2002. In: Layton, H.E., Weinstein, A.M. (Eds.), Membrane Transport and Renal Physiology. The IMA Volumes in Mathematics and Its Applications, vol. 129, pp. 233–272. Springer, New York. Google Scholar
  29. Layton, H.E., Davies, J.M., Casotti, G., Braun, E.J., 2000. Am. J. Physiol., Renal Physiol. 279, F1139. Google Scholar
  30. Liu, W., Morimoto, T., Kondo, Y., Iinuma, K., Uchida, S., Imai, M., 2001. Kidney Int. 60, 680. CrossRefGoogle Scholar
  31. Marcano, M., Layton, A.T., Layton, H.E., 2006. Bull. Math. Biol. 68(7), 1625. CrossRefMathSciNetGoogle Scholar
  32. Marcano-Velázquez, M., Layton, H.E., 2003. Bull. Math. Biol. 65(4), 665. CrossRefGoogle Scholar
  33. Murtagh, B.A., Saunders, M.A., 1978. Math. Prog. 14, 41. MATHCrossRefMathSciNetGoogle Scholar
  34. Murtagh, B.A., Saunders, M.A., 1998. MINOS 5.5 User’s Guide. Tech. Report Sol 83-20R, Stanford Univ., Stanford, CA, Department of Operation Research. Google Scholar
  35. Pannabecker, T.L., Abbott, D.E., Dantzler, W.H., 2004. Am. J. Physiol., Renal Physiol. 286, F38. CrossRefGoogle Scholar
  36. Pannabecker, T.L., Dantzler, W.H., 2004. Am. J. Physiol., Renal Physiol. 287, F767. CrossRefGoogle Scholar
  37. Pannabecker, T.L., Dantzler, W.H., 2006. Am. J. Physiol., Renal Physiol. 290, F1355. CrossRefGoogle Scholar
  38. Pannabecker, T.L., Dantzler, W.H., 2007. Am. J. Physiol., Renal Physiol. 293, F696. CrossRefGoogle Scholar
  39. Pennell, J.P., Lacy, F.B., Jamison, R.L., 1974. Kidney Int. 5, 337. CrossRefGoogle Scholar
  40. Rouffignac, C., de Bonvalet, J.P., 1970. Pflügers Arch. 317, 141. CrossRefGoogle Scholar
  41. Sands, J., Knepper, M., 1987. J. Clin. Invest. 79, 138. CrossRefGoogle Scholar
  42. Sands, J., Nonoguchi, H., Knepper, M., 1987. Am. J. Physiol. (Renal Fluid Electrolyte Physiol. 22) 253, F823. Google Scholar
  43. Sands, J.M., 2002. In: Layton, H.E., Weinstein, A.M. (Eds.), Membrane Transport and Renal Physiology. The IMA Volumes in Mathematics and Its Applications, vol. 129, pp. 193–210. Springer, New York. Google Scholar
  44. Sands, J.M., Layton, H.E., 2007. In: Alpern, R.J., Hebert, S.C. (Eds.), The Kidney: Physiology and Pathophysiology, 4th edn., pp. 1143–1178. Elsevier, New York. Google Scholar
  45. Stephenson, J.L., 1972. Kidney Int. 2, 85. CrossRefGoogle Scholar
  46. Stephenson, J.L., 1992. In: Windhager, E. (Ed.), Handbook of Physiology, pp. 1349–1408. Oxford University Press, New York. Chap. 30. Google Scholar
  47. Tewarson, R.P., 1993a. Appl. Math. Lett. 6(5), 63. CrossRefGoogle Scholar
  48. Tewarson, R.P., 1993b. Appl. Math. Lett. 6(6), 71. MATHCrossRefGoogle Scholar
  49. Tewarson, R.P., Marcano, M., 1997. Inverse Probl. Eng. 5, 1. CrossRefGoogle Scholar
  50. Tewarson, R.P., Toro, W., Marcano, M., 1998. Appl. Math. Lett. 11(3), 51. CrossRefGoogle Scholar
  51. Wang, H., Tewarson, R.P., 1993. Appl. Math. Lett. 6(2), 61. CrossRefGoogle Scholar
  52. Weast, R.C.E., 1974. Handbook of Chemistry and Physics, 55th edn. CRC, Cleveland. Google Scholar
  53. Weinstein, A.M., 1998. Am. J. Physiol., Renal Physiol. 274(5), F841. Google Scholar
  54. Weinstein, A.M., 2000. Am. J. Physiol., Renal Physiol. 279, F24. Google Scholar
  55. Weinstein, A.M., 2002. Am. J. Physiol., Renal Physiol. 283, F1237. Google Scholar
  56. Wesson, L.G., Anslow, W.P., 1952. Am. J. Physiol. 170, 255. Google Scholar
  57. Wexler, A.S., Kalaba, R.E., Marsh, D.H., 1991. Am. J. Physiol. (Renal Fluid Electrolyte Physiol. 29) 260, F384. Google Scholar

Copyright information

© Society for Mathematical Biology 2009

Authors and Affiliations

  • Mariano Marcano
    • 1
  • Anita T. Layton
    • 2
  • Harold E. Layton
    • 2
  1. 1.Department of Computer ScienceUniversity of Puerto RicoRío PiedrasUSA
  2. 2.Department of MathematicsDuke UniversityDurhamUSA

Personalised recommendations