Bulletin of Mathematical Biology

, Volume 72, Issue 1, pp 184–207 | Cite as

The Allee Effect in Mechanistic Models Based on Inter-individual Interaction Processes

Original Article

Abstract

Recently, Eskola and Geritz (Bull. Math. Biol. 69:329–346, 2007) showed that several discrete-time population models can be derived mechanistically within a single ecological framework by varying the within-season patterns of reproduction and inter-individual aggression. However, these models do not have the Allee effect. In this paper, we modify the original modelling framework by adding different mate finding processes, and thus derive mechanistically several population models with the Allee effect.

Keywords

First-principles derivation Discrete-time population model Allee effect 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allee, W.C., 1931. Animal Aggregations, a Study in General Sociology. University of Chicago Press, Chicago. Google Scholar
  2. Allee, W.C., 1938. The Social Life of Animals. Heineman, London. Google Scholar
  3. Allee, W.C., Emerson, A., Park, T., Schmidt, K., 1949. Principles of Animal Ecology. Saunders, Philadelphia. Google Scholar
  4. Anazawa, M., 2009. Bottom-up derivation of discrete-time population models with the Allee effect. Theor. Popul. Biol. 75, 56–67. CrossRefGoogle Scholar
  5. Berec, L., Angulo, E., Courchamp, F., 2007. Multiple Allee effects and population management. Trends Ecol. Evol. 22, 185–191. CrossRefGoogle Scholar
  6. Beverton, R.J.H., Holt, S.J., 1957. On the dynamics of exploited fish populations. Fisheries Investigations, Series 2, vol. 19. Google Scholar
  7. Boukal, D.S., Berec, L., 2002. Single-species models of the Allee effect: extinction boundaries, sex ratios and mate encounters. J. Theor. Biol. 218, 375–394. CrossRefMathSciNetGoogle Scholar
  8. Brännström, A., Sumpter, D.J.T., 2005. The role of competition and clustering in population dynamics. Proc. R. Soc. B 272, 2065–2072. CrossRefGoogle Scholar
  9. Courchamp, F., Berec, L., Gascoigne, J., 2008. Allee Effects in Ecology and Conservation. Oxford University Press, London. CrossRefGoogle Scholar
  10. Courchamp, F., Clutton-Brock, T., Grenfell, B., 1999. Inverse density dependence and the Allee effect. Trends Ecol. Evol. 14, 405–410. CrossRefGoogle Scholar
  11. Eskola, H.T.M., 2009. On the evolution of the timing of reproduction. Theor. Popul. Biol. 75, 98–108. CrossRefGoogle Scholar
  12. Eskola, H.T.M., Geritz, S.A.H., 2007. On the mechanistic derivation of various discrete-time population models. Bull. Math. Biol. 69, 329–346. MATHCrossRefMathSciNetGoogle Scholar
  13. Eskola, H.T.M., Parvinen, K., 2007. On the mechanistic underpinning of discrete-time population models with Allee effect. Theor. Popul. Biol. 72, 41–51. MATHCrossRefGoogle Scholar
  14. Gascoigne, J.C., Lipcius, R.N., 2004. Allee effects driven by predation. J. Appl. Ecol. 41, 801–810. CrossRefGoogle Scholar
  15. Geritz, S.A.H., Kisdi, E., 2004. On the mechanistic underpinning of discrete-time population models with complex dynamics. J. Theor. Biol. 228, 261–269. CrossRefMathSciNetGoogle Scholar
  16. Hassell, M.P., 1975. Density-dependence in single-species populations. J. Anim. Ecol. 44, 283–295. CrossRefGoogle Scholar
  17. Holling, C.S., 1959. Some characteristics of simple types of predation and parasitism. Can. Entomol. 91, 385–398. CrossRefGoogle Scholar
  18. Molnár, P.K., Derocher, A.E., Lewis, M.A., Taylor, M.K., 2008. Modelling the mating system of polar bears: a mechanistic approach to the Allee effect. Proc. R. Soc. B 275, 217–226. CrossRefGoogle Scholar
  19. Pachepsky, E., Nisbet, R.M., Murdoch, W.W., 2008. Between discrete and continuous: Consumer-resource dynamics with synchronized reproduction. Ecology 89, 280–288. CrossRefGoogle Scholar
  20. Parvinen, K., 2005. Evolutionary suicide. Acta Biotheor. 53, 241–264. CrossRefGoogle Scholar
  21. Singh, A., Nisbet, R.M., 2007. Semi-discrete host-parasitoid models. J. Theor. Biol. 247, 733–742. CrossRefMathSciNetGoogle Scholar
  22. Skellam, J.G., 1951. Random dispersal in theoretical populations. Biometrika 38, 196–218. MATHMathSciNetGoogle Scholar
  23. Stephens, P.A., Sutherland, W.J., 1999. Concequences of the Allee effect for behaviour, ecology and conservation. Trends Ecol. Evol. 14, 401–405. CrossRefGoogle Scholar
  24. Stephens, P.A., Sutherland, W.J., Freckleton, R.P., 1999. What is the Allee effect? Oikos 87, 185–190. CrossRefGoogle Scholar
  25. Thieme, H.R.T., 2003. Mathematics in Population Biology. Princeton University Press, Princeton. MATHGoogle Scholar
  26. Wells, H., Wells, P.H., Cook, P., 1990. The importance of overwinter aggregation for reproductive success of monarch butterflies (Danaus plexippus L.). J. Theor. Biol. 147, 115–131. CrossRefGoogle Scholar
  27. Wells, H., Strauss, E.G., Rutter, M.A., Wells, P.H., 1998. Mate location, population growth and species extinction. Biol. Conserv. 86, 317–324. CrossRefGoogle Scholar

Copyright information

© Society for Mathematical Biology 2009

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of TurkuTurkuFinland
  2. 2.Turku Centre for Computer Science TUCSTurkuFinland

Personalised recommendations