Bulletin of Mathematical Biology

, Volume 72, Issue 1, pp 148–183 | Cite as

A Model of Hydrodynamic Interaction Between Swimming Bacteria

  • Vitaliy Gyrya
  • Igor S. Aranson
  • Leonid V. Berlyand
  • Dmitry Karpeev
Original Article

Abstract

We study the dynamics and interaction of two swimming bacteria, modeled by self-propelled dumbbell-type structures. We focus on alignment dynamics of a coplanar pair of elongated swimmers, which propel themselves either by “pushing” or “pulling” both in three- and quasi-two-dimensional geometries of space. We derive asymptotic expressions for the dynamics of the pair, which complemented by numerical experiments, indicate that the tendency of bacteria to swim in or swim off depends strongly on the position of the propulsion force. In particular, we observe that positioning of the effective propulsion force inside the dumbbell results in qualitative agreement with the dynamics observed in experiments, such as mutual alignment of converging bacteria.

Keywords

Bacteria Hydrodynamic interaction Self-propulsion Low Reynolds Stokes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aranson, I., Tsimring, L., 2005. Pattern formation of microtubules and motors: Inelastic interaction of polar rods. Phys. Rev. E 71, 050901(R). CrossRefGoogle Scholar
  2. Aranson, I., Sokolov, A., Goldstein, R., Kessler, J., 2007. Model for dynamical coherence in thin films of self-propelled microorganisms. Phys. Rev. E 75, 040901. CrossRefGoogle Scholar
  3. Brennen, C., Winet, H., 1977. Fluid mechanics of propulsion by cilia and flagella. Ann. Rev. Fluid Mech. 9, 339–398. CrossRefGoogle Scholar
  4. Cisneros, L.H., Cortez, R., Dombrowski, C., Goldstein, R.E., Kessler, J.O., 2007. Fluid dynamics of self-propelled micro-organisms, from individuals to concentrated populations. Exp. Fluids 43, 737–753. CrossRefGoogle Scholar
  5. Diamant, H., Cui, B., Lin, B., Rice, S., 2005. Hydrodynamic interaction in quasi-two-dimensional suspensions, J. Phys., Condens. Matter. Google Scholar
  6. DiLuzio, W., Turner, L., Mayer, M., Garstecki, P., Weibel, D., Berg, H., Whitesides, G., 2005. Escherichia coli swim on the right-hand side. Nature 435, 1271–1274. CrossRefGoogle Scholar
  7. Doi, M., Edwards, S.F., 1986. The Theory of Polymer Dynamics. Clarendon, Oxford. Google Scholar
  8. Dombrowski, C., Cisneros, L., Chatkaew, S., Goldstein, R.E., Kessler, J.O., 2004. Self-concentration and large-scale coherence in bacterial dynamics. Phys. Rev. Lett. 93(9), 098103:1–4. CrossRefGoogle Scholar
  9. Grégoire, G., Chaté, H., 2004. Onset of collective and cohesive motion. Phys. Rev. Lett. 75, 1226–1229. Google Scholar
  10. Gyrya, V., Aranson, I., Berlyand, L., Karpeev, D., 2008. A model of hydrodynamic interaction between swimming bacteria. arXiv:0805.3182v2, pp. 1–28.
  11. Haines, B., Aranson, I., Berlyand, L., Karpeev, D., 2008. Effective viscosity of dilute bacterial suspensions: A two-dimensional model. Preprint. Google Scholar
  12. Hernandez-Ortiz, J., Stoltz, C., Graham, M., 2005. Transport and collective dynamics in suspensions of confined swimming particles. Phys. Rev. Lett. 95, 204501:1–4. CrossRefGoogle Scholar
  13. Ishikawa, T., Pedley, T.J., 2007. The rheology of a semi-dilute suspension of swimming model micro-organisms. J. Fluid Mech. 588, 399–435. MATHMathSciNetGoogle Scholar
  14. Ishikawa, T., Simmonds, M.P., Pedley, T.J., 2006. Hydrodynamic interaction of two swimming model micro-organisms. J. Fluid Mech. 568, 119–160. MATHCrossRefMathSciNetGoogle Scholar
  15. Kessler, J., 2000. Dynamics of swimming bacteria at low and high volume fractions. Int. Conf. Differ. Eqs. 2, 1284–1287. Google Scholar
  16. Khatavkar, V.V., Anderson, P.D., den Toonder, J.M.J., Meijer, H.E.H., 2007. Active micromixer based on artificial cilia. Phys. Fluids 19, 083605. CrossRefGoogle Scholar
  17. Kim, M., Breuera, K., 2004. Enhanced diffusion due to motile bacteria. Phys. Fluids 16(9), L78–L81. CrossRefGoogle Scholar
  18. Kim, S., Karrila, S.J., 1991. Microhydrodynamics: Principles and Selected Applications. Butterworth-Heinemann, Boston. Google Scholar
  19. Kitsunezaki, S., Komori, R., Harumoto, T., 2007. Bioconvection and front formation of paramecium tetraurelia. Phys. Rev. E 76, 046301. CrossRefGoogle Scholar
  20. Lighthill, J., 1976. Flagellar hydrodynamics. SIAM Rev. 18, 161–230. MATHCrossRefMathSciNetGoogle Scholar
  21. Liron, N., Mochon, S., 1976. Stokes flow for a stokeslet between two parallel flat plates. J. Eng. Math. 10(4), 287–303. MATHCrossRefGoogle Scholar
  22. Mendelson, N., Bourque, A., Wilkening, K., Watkins, J., 1999. Organized cell swimming motions in Bacillus subtilis colonies: Patterns of short-lived whirls and jets. J. Bacteriol. 181(2), 600–609. Google Scholar
  23. Najafi, A., Golestanian, R., 2004. Simple swimmer and low Reynolds number: Three linked spheres. Phys. Rev. E 69, 062901. CrossRefGoogle Scholar
  24. Nasseri, S., Phan-Thien, N., 1997. Hydrodynamic interaction between two nearby swimming micromachines. Comput. Mech. 20, 551–559. MATHCrossRefGoogle Scholar
  25. Pedley, T.J., Kessler, J.O., 1992. Hydrodynamic phenomena in suspensions of swimming microorganisms. Ann. Rev. Fluid Mech. 24, 313–358. CrossRefMathSciNetGoogle Scholar
  26. Pooley, C., Alexander, G., Yeomans, J., 2007. Hydrodynamic interaction between two swimmers at low Reynolds number. Phys. Rev. Lett. 99, 228103. CrossRefGoogle Scholar
  27. Purcell, E., (1977). Life at low Reynolds number. Am. J. Phys. 45(3). Google Scholar
  28. Ramia, M., Tullock, D.L., Phan-Thien, N., 1993. The role of hydrodynamic interaction in the locomotion of microorganisms. Biophys. J. 65, 755–778. CrossRefGoogle Scholar
  29. Riedel, I., Kruse, K., Howard, J., 2005. A self-organized vortex array of hydrodynamically entrained sperm cells. Science 309, 300–303. CrossRefGoogle Scholar
  30. Rüffer, U., Nultsch, W., 1985. High-speed cinematographic analysis of the movement of Chlamydomonas. Cell Motil. 5, 251–263. CrossRefGoogle Scholar
  31. Saintillan, D., Shelley, M., 2007. Orientational order and instabilities in suspensions of self-locomoting rods. Phys. Rev. Lett. 99, 058102:1–4. CrossRefGoogle Scholar
  32. Short, M., Solari, C., Ganguly, S., Powers, T., Kessler, J., Goldstein, R., 2006. Flows driven by flagella of multicellular organisms enhance long-range molecular transport. Proc. Nat. Acad. Sci. (USA) 103, 8315–8319. CrossRefGoogle Scholar
  33. Simha, R., Ramaswamy, S., 2002. Hydrodynamic fluctuations and instabilities in ordered suspensions of self-propelled particles. Phys. Rev. Lett. 89(5), 058101:1–4. Google Scholar
  34. Sokolov, A., Aranson, I., Kessler, J., Goldstein, R., 2007. Concentration dependence of the collective dynamics of swimming bacteria. Phys. Rev. Lett. 98, 158102. CrossRefGoogle Scholar
  35. Taylor, G., 1951. Analysis of the swimming of microscopic organisms. Proc. R. Soc. Lond. A 209, 447–461. MATHCrossRefGoogle Scholar
  36. Wu, X.-L., Libchaber, A., 2000. Particle diffusion in a quasi-two-dimensional bacterial bath. Phys. Rev. Lett. 84, 3017–3020. CrossRefGoogle Scholar

Copyright information

© Society for Mathematical Biology 2009

Authors and Affiliations

  • Vitaliy Gyrya
    • 1
  • Igor S. Aranson
    • 2
  • Leonid V. Berlyand
    • 3
  • Dmitry Karpeev
    • 4
  1. 1.Department of MathematicsPennsylvania State UniversityUniversity ParkUSA
  2. 2.Materials Science DivisionArgonne National LaboratoryArgonneUSA
  3. 3.Department of MathematicsPennsylvania State UniversityUniversity ParkUSA
  4. 4.Mathematics and Computer Science DivisionArgonne National LaboratoryArgonneUSA

Personalised recommendations