Advertisement

The Evolution of Conditional Dispersal Strategies in Spatially Heterogeneous Habitats

  • R. Hambrock
  • Y. LouEmail author
Original Article

Abstract

To understand the evolution of dispersal, we study a Lotka–Volterra reaction–diffusion–advection model for two competing species in a heterogeneous environment. The two species are assumed to be identical except for their dispersal strategies: both species disperse by random diffusion and advection along environmental gradients, but with slightly different random dispersal or advection rates. Two new phenomena are found for one-dimensional habitats and monotone intrinsic growth rates: (i) If both species disperse only by random diffusion, i.e., no advection, it was well known that the slower diffuser always wins. We show that if both species have the same advection rate which is suitably large, the faster dispersal will evolve; (ii) If both species have the same random dispersal rate, it was known that the species with a little advection along the resource gradient always wins, provided that the other species is a pure random disperser and the habitat is convex. We show that if both species have the same random dispersal rate and both also have suitably large advection rates, the species with a little smaller advection rate always wins. Implications of these results for the habitat choices of species will be discussed. Some future directions and open problems will be addressed.

Keywords

Evolution of dispersal Reaction Advection Competition 

References

  1. Amarasekare, P., 2008. Spatial dynamics of foodwebs. Annu. Rev. Ecol. Evol. Syst. 39, 479–500. CrossRefGoogle Scholar
  2. Armsworth, P.R., Roughgarden, J.E., 2005a. The impact of directed versus random movement on population dynamics and biodiversity patterns. Am. Nat. 165, 449–465. CrossRefGoogle Scholar
  3. Armsworth, P.R., Roughgarden, J.E., 2005b. Disturbance induces the contrasting evolution of reinforcement and dispersiveness in directed and random movers. Evolution 59, 2083–2096. Google Scholar
  4. Aronson, D.G., 1985. The role of diffusion in mathematical population biology: Skellam revisited. In: Capasso, V., Grosso, E., Paveri-Fontana, S.L. (Eds.), Mathematics in Biology and Medicine, Lecture Notes in Biomathematics, vol. 57, pp. 2–6. Springer, Berlin. Google Scholar
  5. Baskett, M.L., Micheli, F., Levin, S.A., 2007. Designing marine reserves for interacting species: Insights from theory. Biol. Conserv. 137, 163–179. CrossRefGoogle Scholar
  6. Belgacem, F., 1997. Elliptic Boundary Value Problems with Indefinite Weights: Variational Formulations of the Principal Eigenvalue and Applications, Pitman Research Notes in Mathematics, vol. 368. Longman, Harlow. zbMATHGoogle Scholar
  7. Belgacem, F., Cosner, C., 1995. The effects of dispersal along environmental gradients on the dynamics of populations in heterogeneous environment. Can. Appl. Math. Q. 3, 379–397. zbMATHMathSciNetGoogle Scholar
  8. Bowler, D.E., Benten, T.G., 2005. Causes and consequences of animal dispersal strategies: relating individual behavior to spatial dynamics. Biol. Rev. 80, 205–225. CrossRefGoogle Scholar
  9. Cantrell, R.S., Cosner, C., 2003. Spatial Ecology via Reaction-Diffusion Equations, Series in Mathematical and Computational Biology. Wiley, New York. zbMATHCrossRefGoogle Scholar
  10. Cantrell, R.S., Cosner, C., Lou, Y., 2006. Movement towards better environments and the evolution of rapid diffusion. Math. Biosci. 204, 199–214. zbMATHCrossRefMathSciNetGoogle Scholar
  11. Cantrell, R.S., Cosner, C., DeAngelis, D.L., Padrón, V., 2007a. The ideal free distribution as an evolutionarily stable strategy. J. Biol. Dyn. 1, 249–271. zbMATHCrossRefMathSciNetGoogle Scholar
  12. Cantrell, R.S., Cosner, C., Lou, Y., 2007b. Advection mediated coexistence of competing species. Proc. R. Soc. Edinb. A 137, 497–518. zbMATHMathSciNetGoogle Scholar
  13. Cantrell, R.S., Cosner, C., Lou, Y., 2008. Approximating the ideal free distribution via reaction–diffusion–advection equations. J. Differ. Equ. 245, 3687–3703. zbMATHCrossRefMathSciNetGoogle Scholar
  14. Chen, X.F., Lou, Y., 2008. Principal eigenvalue and eigenfunction of elliptic operator with large convection and its application to a competition model. Indiana Univ. Math. J. 57, 627–658. zbMATHCrossRefMathSciNetGoogle Scholar
  15. Chen, X.F., Hambrock, R., Lou, Y., 2008. Evolution of conditional dispersal: a reaction–diffusion–advection model. J. Math. Biol. 57, 361–386. zbMATHCrossRefMathSciNetGoogle Scholar
  16. Cosner, C., Lou, Y., 2003. Does movement toward better environments always benefit a population? J. Math. Anal. Appl. 277, 489–503. zbMATHCrossRefMathSciNetGoogle Scholar
  17. Dancer, E.N., 1995. Positivity of maps and applications. Topological nonlinear analysis. In: Matzeu, Vignoli (Eds.), Prog. Nonlinear Differential Equations Appl., vol.15, pp. 303–340. Birkhauser, Boston. Google Scholar
  18. Doncaster, C.P., Clobert, J., Doligez, B., Gustafsson, L., Danchin, E., 1997. Balanced dispersal between spatially varying local populations: an alternative to the source-sink model. Am. Nat. 150, 425–445. CrossRefGoogle Scholar
  19. Dockery, J., Hutson, V., Mischaikow, K., Pernarowski, M., 1998. The evolution of slow dispersal rates: a reaction–diffusion model. J. Math. Biol. 37, 61–83. zbMATHCrossRefMathSciNetGoogle Scholar
  20. Doebeli, M., 1995. Dispersal and dynamics. Theor. Popul. Biol. 47, 82–106. zbMATHCrossRefGoogle Scholar
  21. Dieckmann, U., 1997. Can adaptive dynamics invade? Trends Ecol. Evol. 12, 128–131. CrossRefGoogle Scholar
  22. Dieckmann, U., Law, R., 1996. The dynamical theory of coevolution: A derivation from stochastic ecological processes. J. Math. Biol. 34, 579–612. zbMATHCrossRefMathSciNetGoogle Scholar
  23. Diekmann, O., 2003. A beginner’s guide to adaptive dynamics. Banach Cent. Publ. 63, 47–86. CrossRefMathSciNetGoogle Scholar
  24. Diekmann, O., Jabin, P.-E., Mischler, S., Perthame, B., 2005. The dynamics of adaptation: an illuminating example and a Hamilton–Jacobi approach. Theor. Popul. Biol. 67, 257–271. zbMATHCrossRefGoogle Scholar
  25. Farnsworth, K., Beecham, J., 1999. How do grazers achieve their distribution? A continuum of models from random diffusion to the ideal free distribution using biased random walks. Am. Nat. 153, 509–526. CrossRefGoogle Scholar
  26. Farnsworth, K.D., Anderson, A.R.A., 2001. How simple grazing rules can lead to persistent boundaries in vegetation communities. Oikos 95, 15–24. CrossRefGoogle Scholar
  27. Faugeras, B., Maury, O., 2007. Modeling fish population movements: From an individual-based representation to an advection–diffusion equation. J. Theor. Biol. 247, 837–848. CrossRefMathSciNetGoogle Scholar
  28. Geritz, S.A.H., Kisdi, E., Meszena, G., Metz, J.A.J., 1998. Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree. Evol. Ecol. 12, 35–57. CrossRefGoogle Scholar
  29. Gilbarg, D., Trudinger, N., 1983. Elliptic Partial Differential Equation of Second Order, 2nd edn. Springer, Berlin. Google Scholar
  30. Grindrod, P., 1988. Models of individual aggregation or clustering in single and multiple-species communities. J. Math. Biol. 26, 651–660. zbMATHMathSciNetGoogle Scholar
  31. Gyllenberg, M., Parvinen, K., 2001. Necessary and sufficient conditions for evolutionary suicide. Bull. Math. Biol. 63, 981–993. CrossRefGoogle Scholar
  32. Hastings, A., 1983. Can spatial variation alone lead to selection for dispersal? Theor. Popul. Biol. 24, 244–251. zbMATHCrossRefMathSciNetGoogle Scholar
  33. Hess, P., 1991. Periodic Parabolic Boundary Value Problems and Positivity. Longman, Harlow. zbMATHGoogle Scholar
  34. Hillen, T., 2003. Transport equations with resting phases. Eur. J. Appl. Math. 14, 613–636. zbMATHCrossRefMathSciNetGoogle Scholar
  35. Hirsch, M.W., 1988. Stability and convergence in strongly monotone dynamical systems. J. Reine Angew. Math. 383, 1–51. zbMATHMathSciNetGoogle Scholar
  36. Holmes, E.E., Lewis, M.A., Banks, J.E., Veit, R.R., 1984. Partial differential equations in ecology: spatial interactions and population dynamics. Ecology 75, 17–29. CrossRefGoogle Scholar
  37. Holt, R.D., 1985. Population dynamics in two-patch environments: some anomalous consequences of an optimal habitat distribution. Theor. Popul. Biol. 28, 181–208. zbMATHCrossRefMathSciNetGoogle Scholar
  38. Holt, R.D., McPeek, M.A., 1996. Chaotic population dynamics favors the evolution of dispersal. Am. Nat. 148, 709–718. CrossRefGoogle Scholar
  39. Hsu, S., Smith, H., Waltman, P., 1996. Competitive exclusion and coexistence for competitive systems on ordered Banach spaces. Trans. Am. Math. Soc. 348, 4083–4094. zbMATHCrossRefMathSciNetGoogle Scholar
  40. Huang, Y., 2005. How do cross-migration models arise. Math. Biosci. 195, 127–140. zbMATHCrossRefMathSciNetGoogle Scholar
  41. Hutson, V., Mischaikow, K., Poláčik, P., 2001. The evolution of dispersal rates in a heterogeneous time-periodic environment. J. Math. Biol. 43, 501–533. zbMATHCrossRefMathSciNetGoogle Scholar
  42. Karim, M.R., Sekine, M., Higuchi, T., Imai, T., Ukida, M., 2003. Simulation of fish behavior and mortality in hypoxic water in an enclosed bay. Ecol. Model. 159, 27–42. CrossRefGoogle Scholar
  43. Kirkland, S., Li, C.-K., Schreiber, S.J., 2006. On the evolution of dispersal in patchy environments. SIAM J. Appl. Math. 66, 1366–1382. zbMATHCrossRefMathSciNetGoogle Scholar
  44. Levin, S.A., Muller-Landau, H.C., Nathan, R., Chave, J., 2003. The ecology and evolution of seed dispersal: a theoretical perspective. Annu. Rev. Eco. Evol. Syst. 34, 575–604. CrossRefGoogle Scholar
  45. Lutscher, F., Pachepsky, E., Lewis, M., 2005. The effect of dispersal patterns on stream populations. SIAM Rev. 47, 749–772. zbMATHCrossRefMathSciNetGoogle Scholar
  46. Lutscher, F., McCauley, E., Lewis, M., 2007. Spatial patterns and coexistence mechanisms in systems with unidirectional flow. Theor. Popul. Biol. 71, 267–277. zbMATHCrossRefGoogle Scholar
  47. Matano, H., 1984. Existence of nontrivial unstable sets for equilibriums of strongly order-preserving systems. J. Fac. Sci. Univ. Tokyo 30, 645–673. zbMATHMathSciNetGoogle Scholar
  48. McPeek, M.A., Holt, R.D., 1992. The evolution of dispersal in spatially and temporally varying environments. Am. Nat. 140, 1010–1027. CrossRefGoogle Scholar
  49. Morris, D.W., Diffendorfer, J.E., Lundberg, P., 2004. Dispersal among habitats varying in fitness: reciprocating migration through ideal habitat selection. Oioks 107, 559–575. CrossRefGoogle Scholar
  50. Murray, J.D., 1993. Mathematical Biology, 2nd edn. Springer, New York. zbMATHGoogle Scholar
  51. Okubo, A., Levin, S.A., 2001. Diffusion and Ecological Problems: Modern Perspectives, 2nd edn. Interdisciplinary Applied Mathematics, vol. 14. Springer, Berlin. Google Scholar
  52. Okubo, A., Maini, P.K., Williams, M.H., Murray, J.D., 1989. On the spread of the grey squirrel in Britain. Proc. R. Soc. Lond. B 238, 113–125. CrossRefGoogle Scholar
  53. Poláčik, P., 2006. Private communication. Google Scholar
  54. Potapov, A.B., Lewis, M.A., 2004. Climate and competition: the effect of moving range boundaries on habitat invasibility. Bull. Math. Biol. 66, 975–1008. CrossRefMathSciNetGoogle Scholar
  55. Shigesada, N., Kawasaki, K., 1997. Biological Invasions: Theory and Practice, Oxford Series in Ecology and Evolution. Oxford University Press, Oxford. Google Scholar
  56. Smith, H., 1995. Monotone Dynamical Systems, Mathematical Surveys and Monographs, vol. 41. American Mathematical Society, Providence. zbMATHGoogle Scholar
  57. Travis, J.M.J., Dytham, C., 1999. Habitat persistence, habitat availability and the evolution of dispersal. Proc. R. Soc. Lond. B 266, 723–728. CrossRefGoogle Scholar
  58. Travis, J.M.J., French, D.R., 2000. Dispersal functions and spatial models: expanding our dispersal toolbox. Ecol. Lett. 3, 163–165. CrossRefGoogle Scholar
  59. Yodzis, P., 1989. Introduction to Theoretical Ecology. Harper and Row, New York. zbMATHGoogle Scholar

Copyright information

© Society for Mathematical Biology 2009

Authors and Affiliations

  1. 1.Department of MathematicsOhio State UniversityColumbusUSA
  2. 2.Department of Mathematics, Mathematical Bioscience InstituteOhio State UniversityColumbusUSA

Personalised recommendations